在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理1

jf_78858299 ? 來(lái)源:機(jī)器學(xué)習(xí)雜貨店 ? 作者:機(jī)器學(xué)習(xí)雜貨店 ? 2023-02-27 15:05 ? 次閱讀

有個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。

這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)用Python從頭實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:

  1. 介紹了神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)——神經(jīng)元;
  2. 在神經(jīng)元中使用S型激活函數(shù);
  3. 神經(jīng)網(wǎng)絡(luò)就是連接在一起的神經(jīng)元;
  4. 構(gòu)建了一個(gè)數(shù)據(jù)集,輸入(或特征)是體重和身高,輸出(或標(biāo)簽)是性別;
  5. 學(xué)習(xí)了損失函數(shù)和均方差損失;
  6. 訓(xùn)練網(wǎng)絡(luò)就是最小化其損失;
  7. 用反向傳播方法計(jì)算偏導(dǎo);
  8. 用隨機(jī)梯度下降法訓(xùn)練網(wǎng)絡(luò)。

***01 ***磚塊:神經(jīng)元

首先讓我們看看神經(jīng)網(wǎng)絡(luò)的基本單位,神經(jīng)元。神經(jīng)元接受輸入,對(duì)其做一些數(shù)據(jù)操作,然后產(chǎn)生輸出。例如,這是一個(gè)2-輸入神經(jīng)元:

圖片

這里發(fā)生了三個(gè)事情。首先,每個(gè)輸入都跟一個(gè)權(quán)重相乘(紅色):

圖片

然后,加權(quán)后的輸入求和,加上一個(gè)偏差b(綠色):

圖片

最后,這個(gè)結(jié)果傳遞給一個(gè)激活函數(shù)f:

圖片

激活函數(shù)的用途是將一個(gè)無(wú)邊界的輸入,轉(zhuǎn)變成一個(gè)可預(yù)測(cè)的形式。常用的激活函數(shù)就就是S型函數(shù):

圖片

S型函數(shù)的值域是(0, 1)。簡(jiǎn)單來(lái)說(shuō),就是把(?∞, +∞)壓縮到(0, 1) ,很大的負(fù)數(shù)約等于0,很大的正數(shù)約等于1。

***02 ***一個(gè)簡(jiǎn)單的例子

假設(shè)我們有一個(gè)神經(jīng)元,激活函數(shù)就是S型函數(shù),其參數(shù)如下:

圖片

圖片就是以向量的形式表示圖片。現(xiàn)在,我們給這個(gè)神經(jīng)元一個(gè)輸入圖片。我們用點(diǎn)積來(lái)表示:

圖片

當(dāng)輸入是[2, 3]時(shí),這個(gè)神經(jīng)元的輸出是0.999。給定輸入,得到輸出的過(guò)程被稱為前饋(feedforward)。

***03 ***編碼一個(gè)神經(jīng)元

讓我們來(lái)實(shí)現(xiàn)一個(gè)神經(jīng)元!用Python的NumPy庫(kù)來(lái)完成其中的數(shù)學(xué)計(jì)算:

import numpy as np
defsigmoid(x): # 我們的激活函數(shù): f(x) = 1 / (1 + e^(-x)) return 1 / (1 + np.exp(-x))
classNeuron: def__init__(self, weights, bias): self.weights = weights self.bias = bias
deffeedforward(self, inputs): # 加權(quán)輸入,加入偏置,然后使用激活函數(shù) total = np.dot(self.weights, inputs) + self.bias return sigmoid(total)
weights = np.array([0, 1]) # w1 = 0, w2 = 1bias = 4 # b = 4n = Neuron(weights, bias)
x = np.array([2, 3]) # x1 = 2, x2 = 3print(n.feedforward(x)) # 0.9990889488055994
還記得這個(gè)數(shù)字嗎?就是我們前面算出來(lái)的例子中的0.999。

***04 ***把神經(jīng)元組裝成網(wǎng)絡(luò)

所謂的神經(jīng)網(wǎng)絡(luò)就是一堆神經(jīng)元。這就是一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò):

圖片

這個(gè)網(wǎng)絡(luò)有兩個(gè)輸入,一個(gè)有兩個(gè)神經(jīng)元(圖片圖片)的隱藏層,以及一個(gè)有一個(gè)神經(jīng)元(圖片 )的輸出層。要注意,圖片輸入就是圖片圖片的輸出,這樣就組成了一個(gè)網(wǎng)絡(luò)。

隱藏層就是輸入層和輸出層之間的層,隱藏層可以是多層的。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4781

    瀏覽量

    101178
  • 神經(jīng)元
    +關(guān)注

    關(guān)注

    1

    文章

    363

    瀏覽量

    18511
  • python
    +關(guān)注

    關(guān)注

    56

    文章

    4807

    瀏覽量

    85040
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    人工神經(jīng)網(wǎng)絡(luò)原理及下載

    這個(gè)網(wǎng)絡(luò)輸入和相應(yīng)的輸出來(lái)“訓(xùn)練”這個(gè)網(wǎng)絡(luò)網(wǎng)絡(luò)根據(jù)輸入和輸出不斷地調(diào)節(jié)自己的各節(jié)點(diǎn)之間的權(quán)值來(lái)滿足輸入和輸出。這樣,當(dāng)訓(xùn)練結(jié)束后,我們給定
    發(fā)表于 06-19 14:40

    labview BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

    請(qǐng)問(wèn):我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒(méi)有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
    發(fā)表于 02-22 16:08

    【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)

    神經(jīng)網(wǎng)絡(luò)的計(jì)算。對(duì)于多層多節(jié)點(diǎn)的神經(jīng)網(wǎng)絡(luò),我們可以使用矩陣乘法來(lái)表示。在上面的神經(jīng)網(wǎng)絡(luò)中,我們將權(quán)重作為
    發(fā)表于 03-03 22:10

    卷積神經(jīng)網(wǎng)絡(luò)如何使用

    卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問(wèn)題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
    發(fā)表于 07-17 07:21

    【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

    今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺(jué)不是很難,只不過(guò)些最基礎(chǔ)的概念容易
    發(fā)表于 07-21 04:30

    人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決些非線性,非平穩(wěn),復(fù)雜的實(shí)際問(wèn)題。那有哪些辦法能
    發(fā)表于 08-01 08:06

    什么是LSTM神經(jīng)網(wǎng)絡(luò)

    簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 01-28 07:16

    如何構(gòu)建神經(jīng)網(wǎng)絡(luò)

    原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反
    發(fā)表于 07-12 08:02

    matlab實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò) 精選資料分享

    習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對(duì)于神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)是如何直沒(méi)有具體實(shí)現(xiàn)
    發(fā)表于 08-18 07:25

    基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

    最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過(guò)對(duì)系統(tǒng)性能的學(xué)習(xí)來(lái)
    發(fā)表于 09-07 07:43

    卷積神經(jīng)網(wǎng)絡(luò)維卷積的處理過(guò)程

    inference在設(shè)備端上做。嵌入式設(shè)備的特點(diǎn)是算力不強(qiáng)、memory小。可以通過(guò)對(duì)神經(jīng)網(wǎng)絡(luò)做量化來(lái)降load和省memory,但有時(shí)可能memory還吃緊,就需要對(duì)神經(jīng)網(wǎng)絡(luò)在memory使用上做進(jìn)
    發(fā)表于 12-23 06:16

    Python從頭實(shí)現(xiàn)個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理2

    個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)
    的頭像 發(fā)表于 02-27 15:06 ?668次閱讀
    <b class='flag-5'>用</b><b class='flag-5'>Python</b><b class='flag-5'>從頭</b><b class='flag-5'>實(shí)現(xiàn)</b><b class='flag-5'>一</b><b class='flag-5'>個(gè)</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>來(lái)</b><b class='flag-5'>理解</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理2

    Python從頭實(shí)現(xiàn)個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理3

    個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)
    的頭像 發(fā)表于 02-27 15:06 ?780次閱讀
    <b class='flag-5'>用</b><b class='flag-5'>Python</b><b class='flag-5'>從頭</b><b class='flag-5'>實(shí)現(xiàn)</b><b class='flag-5'>一</b><b class='flag-5'>個(gè)</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>來(lái)</b><b class='flag-5'>理解</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理3

    Python從頭實(shí)現(xiàn)個(gè)神經(jīng)網(wǎng)絡(luò)來(lái)理解神經(jīng)網(wǎng)絡(luò)的原理4

    個(gè)事情可能會(huì)讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個(gè)詞讓人覺(jué)得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡(jiǎn)單。 這篇文章完全是為新手準(zhǔn)備的。我們會(huì)通過(guò)
    的頭像 發(fā)表于 02-27 15:06 ?738次閱讀
    <b class='flag-5'>用</b><b class='flag-5'>Python</b><b class='flag-5'>從頭</b><b class='flag-5'>實(shí)現(xiàn)</b><b class='flag-5'>一</b><b class='flag-5'>個(gè)</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>來(lái)</b><b class='flag-5'>理解</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理4

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中個(gè)基礎(chǔ)且
    的頭像 發(fā)表于 07-10 15:20 ?1312次閱讀
    主站蜘蛛池模板: 日韩三级久久 | 午夜不卡在线 | 免费一级特黄特色大片 | 国产午夜免费视频片夜色 | 激情五月激情综合色区 | 色欧美在线 | 天天摸天天做天天爽天天弄 | 69xxxxtube日本免费 | 色在线网 | 日剧天堂 | 国产caob| 一区在线播放 | 免费特黄一区二区三区视频一 | 靠比久久 | 色婷婷狠狠干 | 四虎影院台湾辣妹 | 夜夜夜久久久 | 久久视频免费看 | 亚州 色 图 综合 | 亚洲毛片大全 | 奇米777me | 狠狠色婷婷丁香综合久久韩国 | 四虎网址在线 | 天堂资源在线www中文 | 伊人网网 | 免费观看在线视频 | 六月婷婷网视频在线观看 | 看黄视频免费 | 新网球王子u17世界杯篇免费观看 | 女人的逼毛片 | 欧美一区二区三区不卡免费观看 | 七月丁香八月婷婷综合激情 | 天天爱天天操天天干 | 国产性片在线观看 | 婷婷亚洲综合五月天在线 | bt天堂新版中文在线地址 | 国产精品久久久久影视不卡 | 亚洲乱亚洲乱妇41p 亚洲乱亚洲乱妇41p国产成人 | 九九热精品视频在线播放 | 国产亚洲婷婷香蕉久久精品 | 特级全毛片 |