6.3.5.3 界面氮化
6.3.5 氧化硅/SiC 界面特性及其改進方法
6.3 氧化及氧化硅/SiC 界面特性
第6章碳化硅器件工藝
《碳化硅技術基本原理——生長、表征、器件和應用》
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。
舉報投訴
-
SiC
+關注
關注
31文章
3112瀏覽量
64242
發布評論請先 登錄
相關推薦
熱點推薦
碳化硅功率器件有哪些特點
隨著全球對綠色能源和高效能電子設備的需求不斷增加,寬禁帶半導體材料逐漸進入了人們的視野。其中,碳化硅(SiC)因其出色的性能而受到廣泛關注。碳化硅功率器件在電力電子、可再生能源以及電動汽車等領域的應用不斷拓展,成為現代電子
碳化硅功率器件的封裝技術解析
碳化硅(SiC)功率器件因其低內阻、高耐壓、高頻率和高結溫等優異特性,在電力電子系統中得到了廣泛關注和應用。然而,要充分發揮SiC器件的性能,封裝技術至關重要。本文將詳細解析
什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?
隨著電力電子技術的不斷進步,碳化硅MOSFET因其高效的開關特性和低導通損耗而備受青睞,成為高功率、高頻應用中的首選。作為碳化硅MOSFET器件的重要組成部分,柵極氧化層對
發表于 01-04 12:37
8英寸單片高溫碳化硅外延生長室結構
隨著碳化硅(SiC)材料在電力電子、航空航天、新能源汽車等領域的廣泛應用,高質量、大面積的SiC外延生長技術變得尤為重要。8英寸SiC晶圓作為當前及未來一段時間內的主流尺寸,其外延生長

碳化硅功率器件在能源轉換中的創新應用
能源轉換、電力傳輸和電動汽車等領域具有廣闊的應用前景。本文將介紹碳化硅功率器件的基本原理和特點,并探討其在能源轉換中的創新應用,引領高效能源轉換的未來之光。
碳化硅功率器件在能源轉換中的應用
碳化硅(SiC)功率器件作為一種新興的能源轉換技術,因其優異的性能在能源領域受到了廣泛的關注。本文將介紹碳化硅功率器件的
碳化硅 (SiC) 與氮化鎵 (GaN)應用 | 氮化硼高導熱絕緣片
SiC和GaN被稱為“寬帶隙半導體”(WBG)。由于使用的生產工藝,WBG設備顯示出以下優點:1.寬帶隙半導體氮化鎵(GaN)和碳化硅(SiC)在帶隙和擊穿場方面相對相似。氮化鎵的帶隙為3.2eV

碳化硅功率器件的工作原理和應用
碳化硅(SiC)功率器件近年來在電力電子領域取得了顯著的關注和發展。相比傳統的硅(Si)基功率器件,碳化硅具有許多獨特的優點,使其在高效能、高頻率和高溫環境下的應用中具有明顯的優勢。本

碳化硅功率器件的優勢和應用領域
在電力電子領域,碳化硅(SiC)功率器件正以其獨特的性能和優勢,逐步成為行業的新寵。碳化硅作為一種寬禁帶半導體材料,具有高擊穿電場、高熱導率、低介電常數等特點,使得碳化硅功率

碳化硅與氮化鎵哪種材料更好
引言 碳化硅(SiC)和氮化鎵(GaN)是兩種具有重要應用前景的第三代半導體材料。它們具有高熱導率、高電子遷移率、高擊穿場強等優異的物理化學性質,被廣泛應用于高溫、高頻、高功率等極端環境下的電子器件
評論