91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

圖像分割算法原理及工作流程

新機器視覺 ? 來源:工業(yè)新視力 ? 2023-08-18 15:48 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

算法原理

基于深度學(xué)習(xí)的圖像分割算法屬于圖像處理領(lǐng)域最高層次的圖像理解范疇。所謂圖像分割就是把圖像分割成具有相似的顏色或紋理特性的若干子區(qū)域,并使它們對應(yīng)不同的物體或物體的不同部分的技術(shù)。這些子區(qū)域,組成圖像的完備子集,又相互之間不重疊。

1、傳統(tǒng)分割方法

圖像分割問題最早來自于一些文本的分割,醫(yī)學(xué)圖像分割。在文本圖像分割中,需要切割出字符,常見的問題包括指紋識別,車牌識別;由于這一類問題比較簡單,因為基于閾值和聚類的方法被經(jīng)常使用?;陂撝岛途垲惖姆椒m然簡單,但因此也經(jīng)常失效。以graphcut為代表的方法,是傳統(tǒng)圖像分割里面魯棒性最好的方法。Graphcut的基本思路,就是建立一張圖,其中以圖像像素或者超像素作為圖像頂點,然后移除一些邊,使得各個子圖不相連從而實現(xiàn)分割。圖割方法優(yōu)化的目標是找到一個切割,使得移除邊的和權(quán)重最小。

2、深度學(xué)習(xí)方法:

全卷積神經(jīng)網(wǎng)絡(luò)(Fully connected Network)是第一個將卷積神經(jīng)網(wǎng)絡(luò)正式用于圖像分割問題的網(wǎng)絡(luò)。一個用于分類任務(wù)的深度神經(jīng)網(wǎng)絡(luò)通過卷積來不斷抽象學(xué)習(xí),實現(xiàn)分辨率的降低,最后從一個較小的featuremap或者最后的特征向量,這個featuremap通常為55或者77等大小。而圖像分割任務(wù)需要恢復(fù)與原尺度大小一樣的圖片,所以,需要從這個featuremap恢復(fù)原始圖片尺寸,這是一個上采樣的過程。由于這個過程與反卷積是正好對應(yīng)的逆操作,所以我們通常稱其為反卷積。代表算法有FCN、Unet、Deeplab等。

3、深度學(xué)習(xí)算法較之傳統(tǒng)分割算法的優(yōu)勢:

(1)學(xué)習(xí)能力強:深度學(xué)習(xí)自動提取低層次或者高層次特征,具有較強的學(xué)習(xí)能力。

(2)覆蓋范圍廣,適應(yīng)性好:深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)層數(shù)很多,寬度很廣,理論上可以映射到任意函數(shù),所以能解決很復(fù)雜的問題。

(3)數(shù)據(jù)驅(qū)動,上限高:深度學(xué)習(xí)高度依賴數(shù)據(jù),數(shù)據(jù)量越大,它的表現(xiàn)就越好。在圖像識別、面部識別、NLP 等部分任務(wù)甚至已經(jīng)超過了人類的表現(xiàn)。同時還可以通過調(diào)參進一步提高它的上限。

(4)可移植性好:由于深度學(xué)習(xí)的優(yōu)異表現(xiàn),有很多框架可以使用,例如 TensorFlow、Pytorch。這些框架可以兼容很多平臺。

傳統(tǒng)分割方法中特征提取主要依賴人工設(shè)計的提取器,需要有專業(yè)知識及復(fù)雜的調(diào)參過程,同時每個方法都是針對具體應(yīng)用,泛化能力及魯棒性較差。存儲開銷大,計算效率低下,識別速度較慢。

深度學(xué)習(xí)主要是數(shù)據(jù)驅(qū)動進行特征提取,根據(jù)大量樣本的學(xué)習(xí)能夠得到深層的、數(shù)據(jù)集特定的特征表示,其對數(shù)據(jù)集的表達更高效和準確,所提取的抽象特征魯棒性更強,泛化能力更好,并且可以是端到端的。

4、Unet算法

本項目使用了基于深度學(xué)習(xí)的Unet網(wǎng)絡(luò):Unet網(wǎng)絡(luò)由兩部分組成,前半部分作用是特征提?。ɑA(chǔ)模型為MobileNet),后半部分是上采樣。在一些文獻中也把這樣的結(jié)構(gòu)叫做編碼器-解碼器結(jié)構(gòu)。由于此網(wǎng)絡(luò)整體結(jié)構(gòu)類似于大寫的英文字母U,故得名Unet。

wKgaomTfIrGAIWiIAAB7IHJoruY952.jpg

Unet與其他常見的分割網(wǎng)絡(luò)有一點非常不同的地方:Unet采用了完全不同的特征融合方式:拼接,Unet采用將特征在channel維度拼接在一起,形成更厚的特征。而FCN融合時使用的對應(yīng)點相加,并不形成更厚的特征。

所以語義分割網(wǎng)絡(luò)在特征融合時有兩種辦法:

(1)FCN式的對應(yīng)點相加,對應(yīng)于TensorFlow中的tf.add()函數(shù);

(2)Unet式的channel維度拼接融合,對應(yīng)于TensorFlow的tf.concat()函數(shù),比較占顯存。

除了上述新穎的特征融合方式,Unet還有以下幾個優(yōu)點:

(1)5個pooling layer實現(xiàn)了網(wǎng)絡(luò)對圖像特征的多尺度特征識別。

(2)上采樣部分會融合特征提取部分的輸出,這樣做實際上是將多尺度特征融合在了一起,以最后一個上采樣為例,它的特征既來自第一個卷積block的輸出(同尺度特征),也來自上采樣的輸出(大尺度特征),這樣的連接是貫穿整個網(wǎng)絡(luò)的,可以看到上圖的網(wǎng)絡(luò)中有四次融合過程,相對應(yīng)的FCN網(wǎng)絡(luò)只在最后一層進行融合。

數(shù)據(jù)集準備

深度學(xué)習(xí)模型的精確度一般依賴于數(shù)據(jù)集的大小,CNN要求用于訓(xùn)練的數(shù)據(jù)集足夠大,能夠覆蓋問題域中所有已知可能出現(xiàn)的問題。設(shè)計CNN的時候,數(shù)據(jù)集包含三個子集:訓(xùn)練集、測試集、驗證集。

1、訓(xùn)練集:包含問題域中的所有數(shù)據(jù),并在訓(xùn)練階段用來調(diào)整網(wǎng)絡(luò)的權(quán)重。

2、測試集:在訓(xùn)練的過程中用于測試網(wǎng)絡(luò)對訓(xùn)練集中未出現(xiàn)數(shù)據(jù)的檢測性能,根據(jù)網(wǎng)絡(luò)在測試集上的性能情況,網(wǎng)絡(luò)的結(jié)構(gòu)可能需要做出調(diào)整,或者增加訓(xùn)練循環(huán)次數(shù)。

3、驗證集:驗證集中的數(shù)據(jù)統(tǒng)一應(yīng)該包含在測試集和訓(xùn)練集中沒有出現(xiàn)過的數(shù)據(jù),用于在網(wǎng)絡(luò)確定之后能夠更好的測試和衡量網(wǎng)絡(luò)的性能。

數(shù)據(jù)預(yù)處理與參數(shù)設(shè)置

1、數(shù)據(jù)預(yù)處理

為了加速訓(xùn)練的收斂速度,一般都會采用一些數(shù)據(jù)預(yù)處理技術(shù),其中包括:去除噪聲、輸入數(shù)據(jù)降維、刪除無關(guān)數(shù)據(jù)等。

數(shù)據(jù)的平衡化在目標檢測問題中異常重要,一般認為訓(xùn)練集中的數(shù)據(jù)應(yīng)該相對于標簽類別近似于平均分布,也就是每一個類別標簽所對應(yīng)的數(shù)據(jù)集在訓(xùn)練集中是基本相等的,以避免網(wǎng)絡(luò)過于傾向于表現(xiàn)某些分類的特點。

為了平衡數(shù)據(jù)集,應(yīng)該移除一些過度富余的分類中的數(shù)據(jù),并相應(yīng)補充一些相對樣例稀少的分類中的數(shù)據(jù)。還有一個方法就是復(fù)制一部分這些樣例稀少的數(shù)據(jù),并在這些數(shù)據(jù)中加入隨機噪聲。

2、數(shù)據(jù)歸一化

將數(shù)據(jù)規(guī)則化到統(tǒng)一的區(qū)間(如[0,1])中,可以防止數(shù)據(jù)中存在較大數(shù)值的數(shù)據(jù)造成數(shù)值較小的數(shù)據(jù)對于訓(xùn)練效果減弱甚至無效化。一個常用的方法是將輸入和輸出數(shù)據(jù)按比例調(diào)整到一個和激活函數(shù)相對應(yīng)的區(qū)間。

3、網(wǎng)絡(luò)權(quán)值初始化

CNN的初始化主要是初始化卷積層和輸出層的權(quán)值和偏置。網(wǎng)絡(luò)權(quán)值初始化就是將網(wǎng)絡(luò)中的所有連接權(quán)重賦予一個初始值,如果初始權(quán)重向量處在誤差曲面的一個相對平緩的區(qū)域的時候,網(wǎng)絡(luò)訓(xùn)練的收斂速度可能會很緩慢,一般情況下網(wǎng)絡(luò)的連接權(quán)重和偏置被初始化在一個具有0均值的相對小的區(qū)間內(nèi)均勻分布。

4、學(xué)習(xí)速率

如果學(xué)習(xí)速率選取的較大,則會在訓(xùn)練過程中較大幅度的調(diào)整權(quán)值,從而加快網(wǎng)絡(luò)的訓(xùn)練速度,但是這會造成網(wǎng)絡(luò)在誤差曲面上搜索過程中頻繁抖動,且有可能使得訓(xùn)練過程不能收斂。如果學(xué)習(xí)速率選取的較小,能夠穩(wěn)定的使得網(wǎng)絡(luò)逼近于全局最優(yōu)點,但也可能陷入一些局部最優(yōu),并且參數(shù)更新速度較慢。自適應(yīng)學(xué)習(xí)率設(shè)定有較好的效果。

5、收斂條件

訓(xùn)練誤差、誤差梯度、交叉驗證等可以作為停止訓(xùn)練的判定條件。一般來說,訓(xùn)練集的誤差會隨著網(wǎng)絡(luò)訓(xùn)練的進行而逐步降低。

標注

對訓(xùn)練集和測試集的數(shù)據(jù)使用專業(yè)的標注工具進行標注,本項目標注圖片數(shù)量為5000張。

訓(xùn)練流程

訓(xùn)練過程分為兩個階段:前向傳播階段和后向傳播階段

前向傳播階段:

1、從樣本集中取N個樣本,輸入網(wǎng)絡(luò)。

2、計算相應(yīng)的實際輸出,在此階段信息從輸入層經(jīng)過逐級變換,傳送到輸出層。

后向傳播階段:

1、計算實際輸出與相應(yīng)的理想輸出的誤差。

2、按照極小化誤差的方法調(diào)整權(quán)值矩陣。

具體訓(xùn)練過程如下:

1、選定訓(xùn)練組,從樣本集中分別隨機地尋求N個樣本作為訓(xùn)練組。

2、將各權(quán)值、偏置,設(shè)置成小的接近于0的隨機值,并初始化精度控制參數(shù)和學(xué)習(xí)率。

3、從訓(xùn)練組中取一個輸入模式加到網(wǎng)絡(luò),并給出它的目標輸出向量。

4、計算出中間層輸出向量,計算出網(wǎng)絡(luò)的實際輸出向量。

5、將輸出向量中的元素與目標向量中的元素進行比較,計算出輸出誤差;對于中間層的隱單元也需要計算出誤差。

6、依次計算出各權(quán)值的調(diào)整量和偏置的調(diào)整量。

7、調(diào)整權(quán)值和調(diào)整偏置。

8、當經(jīng)歷M次迭代后,判斷指標是否滿足精度要求,如果不滿足,則返回步驟3,繼續(xù)迭代;如果滿足就進入下一步。

9、訓(xùn)練結(jié)束,將權(quán)值和偏置保存在模型文件中。這時可以認為各個權(quán)值已經(jīng)達到穩(wěn)定,模型已經(jīng)形成。再一次進行訓(xùn)練時,直接從模型文件中導(dǎo)出權(quán)值和偏置進行訓(xùn)練,不需要進行初始化。

識別流程

利用訓(xùn)練好的模型對待檢測的圖片進行缺陷檢測的具體流程大致為:

1、將整張圖片傳入模型進行下采樣,得到特征圖。

2、將特征圖進行上采樣且結(jié)合下采樣特征圖得到與原圖尺寸一樣的mask圖。

3、對mask圖進行可視化即可看到測試結(jié)果。

模型優(yōu)化

針對識別結(jié)果可以通過以下方法優(yōu)化模型:

1、增加樣本數(shù)量。

2、豐富缺陷種類和平衡每種缺陷的樣本數(shù)量。

3、調(diào)整模型參數(shù)。

來源:工業(yè)新視力

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:圖像分割算法原理及工作流程

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    基于GAC模型實現(xiàn)交互式圖像分割的改進算法

    的交互式圖像分割方法。如何自動提供數(shù)量少而有效的候選邊界點是本文研究的重點。1 基于GAC模型的交互式圖像分割算法  基于GAC模型的交互式
    發(fā)表于 09-19 09:19

    基于改進遺傳算法圖像分割方法

    基于改進遺傳算法圖像分割方法提出一種應(yīng)用于圖像分割的改進遺傳算法,
    發(fā)表于 09-19 09:36

    AndroidWifi工作流程

    AndroidWifi工作流程
    發(fā)表于 11-02 10:52

    AndroidWifi工作流程

    AndroidWifi工作流程
    發(fā)表于 09-25 11:17

    免疫克隆SAR圖像分割算法

    由于存在相干斑噪聲的影響,使得常規(guī)的圖像分割技術(shù)應(yīng)用于SAR 圖像時,效果往往較差。該文提出一種新人工免疫系統(tǒng)SAR 圖像分割
    發(fā)表于 11-13 11:36 ?16次下載

    一種改進的圖像分割算法分析

    針對傳統(tǒng)閾值分割算法的一些缺點,通過將數(shù)字形態(tài)學(xué)與閾值分割算法相互結(jié)合提出了一種改進的閾值分割算法
    發(fā)表于 11-03 09:47 ?3次下載
    一種改進的<b class='flag-5'>圖像</b><b class='flag-5'>分割</b><b class='flag-5'>算法</b>分析

    基于像素聚類進行圖像分割算法

    B型心臟超聲圖像分割是計算心功能參數(shù)前重要的一步。針對超聲圖像的低分辨率影響分割精度及基于模型的分割算法
    發(fā)表于 12-06 16:44 ?0次下載
    基于像素聚類進行<b class='flag-5'>圖像</b><b class='flag-5'>分割</b>的<b class='flag-5'>算法</b>

    一種新的彩色圖像分割算法

    本文提出一種新的結(jié)合分水嶺與種子區(qū)域生成、區(qū)域合并的彩色圖像分割算法。首先將RGB顏色空間轉(zhuǎn)換成HSI間,應(yīng)用分水嶺算法圖像進行初始化
    發(fā)表于 12-14 14:41 ?1次下載
    一種新的彩色<b class='flag-5'>圖像</b><b class='flag-5'>分割</b><b class='flag-5'>算法</b>

    圖像分割圖像邊緣檢測

     圖像分割的研究多年來一直受到人們的高度重視,至今提出了各種類型的分割算法。Pal把圖像分割
    發(fā)表于 12-19 09:29 ?1.2w次閱讀
    <b class='flag-5'>圖像</b><b class='flag-5'>分割</b>和<b class='flag-5'>圖像</b>邊緣檢測

    工作流程圖怎么用?有哪些繪制工作流程圖的軟件

    工作流程圖是清晰地展示工作中各個環(huán)節(jié)的流程圖圖示,主要用于工作活動和效率的管理。工作流程圖這種圖示方法具有直觀描述性、簡潔性、可操作性和指導(dǎo)
    的頭像 發(fā)表于 07-28 14:22 ?3936次閱讀

    改進自適應(yīng)GACV的水下圖像分割算法研究

    改進自適應(yīng)GACV的水下圖像分割算法研究(通信電源技術(shù)20年第13期)-基于改進自適應(yīng)GACV的水下圖像分割
    發(fā)表于 09-22 15:32 ?11次下載
    改進自適應(yīng)GACV的水下<b class='flag-5'>圖像</b><b class='flag-5'>分割</b><b class='flag-5'>算法</b>研究

    一種對紅細胞和白細胞圖像分類任務(wù)的主動學(xué)習(xí)端到端工作流程

    細胞成像的分割和分類等技術(shù)是一個快速發(fā)展的領(lǐng)域研究。就像在其他機器學(xué)習(xí)領(lǐng)域一樣,數(shù)據(jù)的標注是非常昂貴的,并且對于數(shù)據(jù)標注的質(zhì)量要求也非常的高。針對這一問題,本篇文章介紹一種對紅細胞和白細胞圖像分類任務(wù)的主動學(xué)習(xí)端到端工作流程。
    的頭像 發(fā)表于 08-13 10:27 ?1662次閱讀

    遺傳算法的基本原理 基于遺傳算法圖像分割

      摘要:遺傳算法是對生物進化論中自然選擇和遺傳學(xué)機理中生物進化過程的模擬來計算最優(yōu)解的方法。遺傳算法具有眾多的優(yōu)點,如魯棒性、并行性、自適應(yīng)性和快速收斂,可以應(yīng)用在圖像處理技術(shù)領(lǐng)域中圖像
    發(fā)表于 07-18 16:04 ?1次下載

    卷積神經(jīng)網(wǎng)絡(luò)算法流程 卷積神經(jīng)網(wǎng)絡(luò)模型工作流程

    卷積神經(jīng)網(wǎng)絡(luò)算法流程 卷積神經(jīng)網(wǎng)絡(luò)模型工作流程? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種廣泛應(yīng)用于目標跟蹤、圖像識別和語音識別等領(lǐng)域的深
    的頭像 發(fā)表于 08-21 16:50 ?3360次閱讀

    NX CAD軟件:數(shù)字化工作流程解決方案(CAD工作流程)

    NXCAD——數(shù)字化工作流程解決方案(CAD工作流程)使用西門子領(lǐng)先的產(chǎn)品設(shè)計軟件NXCAD加速執(zhí)行基于工作流程的解決方案。我們在了解行業(yè)需求方面累積了多年的經(jīng)驗,并據(jù)此針對各個行業(yè)的具體需求提供
    的頭像 發(fā)表于 02-06 18:15 ?449次閱讀
    NX CAD軟件:數(shù)字化<b class='flag-5'>工作流程</b>解決方案(CAD<b class='flag-5'>工作流程</b>)
    主站蜘蛛池模板: 天天干天天拍天天射天天添天天爱 | 中文字幕一区二区三区在线播放 | 韩国电影天堂网 | 亚洲色图欧美在线 | 伊人网址 | 亚洲bt欧美bt高清bt777 | 69pao强力打造免费高清 | 国产成人啪精品午夜在线观看 | 天天爱夜夜爽 | 天天摸天天做天天爽水多 | 97久久草草超级碰碰碰 | 国产精品久久久久久久久ktv | 日本精品视频 | 真人实干一级毛片aa免费 | 3344a毛片在线看 | 亚洲地址一地址二地址三 | 伊人精品成人久久综合欧美 | 99国产福利| 天堂资源在线种子资源 | 国产成人91青青草原精品 | 色777777女人色 | 种子 在线播放 | 9久久9久久精品 | 一级黄色毛片免费看 | 天天色综合三 | 天堂资源wwww在线看 | mm365快播综合网 | 日本口工福利漫画无遮挡 | 日日干夜夜操s8 | 久久久久久久久久免观看 | 57pao成人永久免费视频 | 欧美一级视频在线观看欧美 | 九九国产在线观看 | 黄频网站免费大全在线观看 | 91中文字幕视频 | 在线天堂中文官网 | 五月综合激情视频在线观看 | 午夜免费福利片 | 亚洲 另类 在线 欧美 制服 | 男人j进入女人免费视频 | 天天插天天射天天干 |