在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

cnn卷積神經網絡簡介 cnn卷積神經網絡代碼

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 17:16 ? 次閱讀

cnn卷積神經網絡簡介 cnn卷積神經網絡代碼

卷積神經網絡(Convolutional Neural Network,簡稱CNN)是目前深度學習領域中應用廣泛的一種神經網絡模型。CNN的出現以解決圖像識別問題為主要目標,但它的應用已經滲透到了各種領域,從自然語言處理、語音識別、到物體標記以及醫療影像分析等。在此,本文將對CNN的原理、結構以及基礎代碼進行講解。

1. CNN的原理

CNN是一種能夠自動提取特征的神經網絡結構,它的每個層次在進行特征提取時會自動適應輸入數據的特點和模式。最重要的原理是卷積操作,卷積操作使得神經網絡能夠自動在數據中提取有用的特征。

卷積的過程可以概括為:將一個卷積核與數據進行卷積運算,計算出對應特征圖,其中卷積核是一組可以學習的參數。卷積核在每個位置的計算結果都是相同的,因此可以共享參數,減少網絡需要學習的參數數量。通過多次卷積和池化操作,不斷提取特征,最終使用全連接層對提取的特征進行分類和預測。

2. CNN的結構

CNN主要包括卷積層、池化層、全連接層和激活函數。

(1)卷積層:卷積層通過對輸入數據進行卷積操作來提取特征。在卷積層中,每個節點與前一層的局部節點進行連接,并使用權重參數來進行卷積計算。這些連接以及卷積核參數可以在訓練過程中進行學習和優化。

(2)池化層:池化層通常用于特征降維和空間平移不變性,它通過對輸入的局部區域進行取樣,并根據取樣結果生成對應的特征圖。常見的池化方式有最大池化和平均池化。

(3)全連接層:全連接層將上一層的特征映射與權重進行正常的向量乘法運算,并添加一個偏置項,輸出下一層的特征向量。

(4)激活函數:激活函數對原始輸入進行非線性變換,使得神經網絡可以更好地擬合非線性模式和特征。目前常用的激活函數有ReLU、sigmoid、tanh等。

3. CNN的常見代碼實現

下面是一個基礎的CNN代碼實現,使用PythonTensorFlow進行編寫:

```python
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

# 定義網絡節點
x = tf.placeholder(tf.float32, shape=[None, 28*28])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

x_image = tf.reshape(x, [-1, 28, 28, 1])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 定義損失函數
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))

# 訓練模型
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess = tf.Session()
sess.run(tf.global_variables_initializer())

for i in range(20000):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(session=sess, feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(session=sess, feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
```

上述代碼實現了一個可用于MNIST手寫數字分類的CNN模型。其中,輸入的手寫數字圖像尺寸為28x28,共有10個分類類別。在代碼實現中,通過定義正確的節點,自定義權重初始化、卷積、池化等操作函數,定義激活函數,一個基本的CNN模型就被創建出來。訓練時,通過對權重進行優化和學習,CNN可以逐漸實現對手寫數字圖像的自動分類。

總結:

CNN是目前廣泛運用于深度學習領域的優秀卷積神經網絡模型,其不可替代的優勢在于其自適應特征提取、空間不變性、共享參數、長期依賴等特點。了解CNN的基本原理、結構和代碼實現有助于進一步理解和應用神經網絡模型,可以應用于圖像識別、物體標記、自然語言處理、醫療影像分析等多個領域。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4797

    瀏覽量

    102262
  • cnn
    cnn
    +關注

    關注

    3

    文章

    354

    瀏覽量

    22566
  • 卷積神經網絡

    關注

    4

    文章

    369

    瀏覽量

    12120
收藏 人收藏

    評論

    相關推薦

    BP神經網絡卷積神經網絡的比較

    多層。 每一層都由若干個神經元構成,神經元之間通過權重連接。信號在神經網絡中是前向傳播的,而誤差是反向傳播的。 卷積神經網絡
    的頭像 發表于 02-12 15:53 ?376次閱讀

    卷積神經網絡的基本概念、原理及特點

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習算法,它在圖像識別、視頻分析、自然語言處理等領域有著廣泛的應用。本文將詳細介紹卷積
    的頭像 發表于 07-11 14:38 ?1999次閱讀

    BP神經網絡卷積神經網絡的關系

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器
    的頭像 發表于 07-10 15:24 ?2071次閱讀

    循環神經網絡卷積神經網絡的區別

    循環神經網絡(Recurrent Neural Network,RNN)和卷積神經網絡(Convolutional Neural Network,CNN)是深度學習領域中兩種非常重要的
    的頭像 發表于 07-04 14:24 ?1790次閱讀

    卷積神經網絡的實現原理

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積
    的頭像 發表于 07-03 10:49 ?908次閱讀

    bp神經網絡卷積神經網絡區別是什么

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工
    的頭像 發表于 07-03 10:12 ?2157次閱讀

    卷積神經網絡分類方法有哪些

    卷積神經網絡(Convolutional Neural Networks,CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等計算機視覺任務。本文將詳細介紹卷積
    的頭像 發表于 07-03 09:40 ?746次閱讀

    卷積神經網絡的基本結構和工作原理

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積
    的頭像 發表于 07-03 09:38 ?1312次閱讀

    cnn卷積神經網絡分類有哪些

    卷積神經網絡CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等領域。本文將詳細介紹CNN在分類任務中的應用,包括基本結構、關鍵技術、常見
    的頭像 發表于 07-03 09:28 ?1070次閱讀

    cnn卷積神經網絡三大特點是什么

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。CNN具有以下三大特點: 局
    的頭像 發表于 07-03 09:26 ?2225次閱讀

    卷積神經網絡訓練的是什么

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積
    的頭像 發表于 07-03 09:15 ?752次閱讀

    卷積神經網絡的原理與實現

    1.卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。 卷積
    的頭像 發表于 07-02 16:47 ?1018次閱讀

    卷積神經網絡cnn模型有哪些

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。 CNN的基本概念 1.1
    的頭像 發表于 07-02 15:24 ?1055次閱讀

    卷積神經網絡的原理是什么

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、語音識別、自然語言處理等領域。本文將詳細介紹卷積
    的頭像 發表于 07-02 14:44 ?1057次閱讀

    卷積神經網絡和bp神經網絡的區別

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)和BP神經網絡(Backpropagation Neural Networks,簡稱BPNN)是兩
    的頭像 發表于 07-02 14:24 ?5630次閱讀
    主站蜘蛛池模板: 天天摸夜夜添夜夜添国产 | 精品欧美| 日本三级视频在线 | 色老板在线视频一区二区 | 色天天干 | 日日噜噜爽爽狠狠视频 | 黄免费看 | 欧美午夜性 | 男女全黄做爰视频 | www.日日爱| 三级视频在线播放线观看 | 五月婷婷六月丁香激情 | 激情综合六月 | 国产毛片农村妇女aa板 | 亚洲毛片基地4455ww | 亚洲免费色 | 伊人久久大香线蕉综合高清 | 婷婷亚洲综合五月天在线 | bt 另类 专区 欧美 制服 | 亚洲国产婷婷香蕉久久久久久 | 亚洲国产丝袜精品一区杨幂 | 欧美三级成人 | 国产999星空传媒在线观看 | 天堂资源在线种子资源 | 美女被免网站在线视频 | 日日夜夜精品 | 免费高清在线观看a网站 | 六月婷婷精品视频在线观看 | 国产美女一级ba大片免色 | 欧美久久天天综合香蕉伊 | 精品成人毛片一区二区视 | 69xxx欧美| 看免费一级片 | 亚洲一区二区欧美 | 午夜影院在线观看免费 | 国内91视频| 男女爱爱福利 | 椎名空中文字幕一区二区 | 禁网站在线观看免费视频 | 色多多·com 色多多18免费观看 色多多a | 天天擦天天干 |