在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

反思深度學(xué)習(xí)與傳統(tǒng)計(jì)算機(jī)視覺的關(guān)系

穎脈Imgtec ? 2023-09-12 08:29 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

來源:算法與數(shù)學(xué)之美

某種程度上,深度學(xué)習(xí)最大的優(yōu)勢就是自動創(chuàng)建沒有人會想到的特性能力。

如今,深度學(xué)習(xí)在眾多領(lǐng)域都有一席之地,尤其是在計(jì)算機(jī)視覺領(lǐng)域。盡管許多人都為之深深著迷,然而,深網(wǎng)就相當(dāng)于一個黑盒子,我們大多數(shù)人,甚至是該領(lǐng)域接受過培訓(xùn)的科學(xué)家,都不知道它們究竟是如何運(yùn)作的。

大量有關(guān)深度學(xué)習(xí)的成功或失敗事例給我們上了寶貴的一課,教會我們正確處理數(shù)據(jù)。在這篇文章中,我們將深入剖析深度學(xué)習(xí)的潛力,深度學(xué)習(xí)與經(jīng)典計(jì)算機(jī)視覺的關(guān)系,以及深度學(xué)習(xí)用于關(guān)鍵應(yīng)用程序的潛在危險。


視覺問題的簡單與復(fù)雜

首先,我們需要就視覺/計(jì)算機(jī)視覺問題提出一些看法。原則上它可以這樣理解,人們給定一幅由攝像機(jī)拍攝的圖像,并允許計(jì)算機(jī)回答關(guān)于與該圖像內(nèi)容的相關(guān)問題。

問題的范圍可以從“圖像中是否存在三角形”,“圖像中是否有人臉”等簡單問題到更為復(fù)雜的問題,例如“圖像中是否有狗在追逐貓”。盡管這類的問題看起來很相似,對于人類來說甚至有點(diǎn)微不足道,但事實(shí)證明,這些問題所隱藏的復(fù)雜性存在巨大差異。

雖然回答諸如“圖像中是否有紅圈”或“圖像中有多少亮點(diǎn)”之類的問題相對容易,但其他看似簡單的問題如“圖像中是否有一只貓”,則要復(fù)雜得多。“簡單”視覺問題和“復(fù)雜”視覺問題之間的區(qū)別難以界限。

這一點(diǎn)值得注意,因?yàn)閷τ谌祟愡@種高度視覺化的動物來說,上述所有問題都是不足以成為難題,即便是對孩子們來說,回答上述視覺問題也并不困難。然而,處在變革時期的深度學(xué)習(xí)卻無法回答這些問題。


傳統(tǒng)計(jì)算機(jī)視覺V.S.深度學(xué)習(xí)

傳統(tǒng)計(jì)算機(jī)視覺是廣泛算法的集合,允許計(jì)算機(jī)從圖像中提取信息(通常表示為像素值數(shù)組)。目前,傳統(tǒng)計(jì)算機(jī)視覺已有多種用途,例如對不同的對象進(jìn)行去噪,增強(qiáng)和檢測。

一些用途旨在尋找簡單的幾何原語,如邊緣檢測,形態(tài)分析,霍夫變換,斑點(diǎn)檢測,角點(diǎn)檢測,各種圖像閾值化技術(shù)等。還有一些特征代表技術(shù),如方向梯度直方圖可以作為機(jī)器學(xué)習(xí)分類器的前端,來構(gòu)建更復(fù)雜的檢測器。

與普遍的看法相反,上面討論的工具結(jié)合在一起可以造出針對特定對象的檢測器,這種檢測器性能強(qiáng),效率高。除此之外,人們還可以構(gòu)建面部檢測器,汽車檢測器,路標(biāo)檢測器,在精準(zhǔn)度和計(jì)算復(fù)雜性等方面,這些檢測器很可能優(yōu)于深度學(xué)習(xí)。

但問題是,每個檢測器都需要由有能力的人從頭開始構(gòu)建,這一行為低效又昂貴。因此,從歷史上看,表現(xiàn)優(yōu)良的探測器只適用于那些必須經(jīng)常被檢測,并且能夠證明前期投資是明智的對象。

這些探測器中有許多是專有的,不向公眾開放,比如人臉檢測器,車牌識別器等等。但是,沒有一個心智正常的人會花錢編寫狗探測器或分類器,以便從圖像中對狗的品種進(jìn)行分類。于是,深度學(xué)習(xí)就派上了用場。


尖子生的啟迪

假設(shè)你正在教授計(jì)算機(jī)視覺課程,在課程的前半部分,你要帶領(lǐng)學(xué)生們復(fù)習(xí)大量的專業(yè)知識,然后留時間給學(xué)生完成任務(wù),也就是收集圖像內(nèi)容并提問。任務(wù)一開始很簡單,例如通過詢問圖像中是否有圓形或正方形,再到更復(fù)雜的任務(wù),例如區(qū)分貓和狗。

學(xué)生每周都要編寫計(jì)算機(jī)程序來完成任務(wù),而你負(fù)責(zé)查看學(xué)生編寫的代碼,并運(yùn)行查看它們的效果如何。

這個學(xué)期,一名新生加入了你的班級。他不愛說話,不愛社交,也沒有提過什么問題。但是,當(dāng)他提交自己的第一個任務(wù)方案時,你感到有點(diǎn)意外。這名新生編寫的代碼讓人難以理解,你從來都沒見過這樣的代碼。看起來他像是用隨機(jī)的過濾器對每幅圖像進(jìn)行卷積,然后再用非常奇怪的邏輯來得到最終的答案。

你運(yùn)行了這段代碼,效果非常好。你心想,雖然這個解決方案非同尋常,但只要它有效就足夠了。幾周過去了,學(xué)生們需要完成的任務(wù)難度越來越高,你也從這名新生那里得到了越來越復(fù)雜的代碼。他的代碼出色地完成了難度日益增大的任務(wù),但你無法真正理解其中的內(nèi)容。

期末的時候,你給學(xué)生們布置了一項(xiàng)作業(yè),用一組真實(shí)的圖片來區(qū)分貓和狗。結(jié)果,沒有學(xué)生能夠在這項(xiàng)任務(wù)上達(dá)到超過65%的準(zhǔn)確率,但是新生編寫的代碼準(zhǔn)確率高達(dá)95%,你大吃一驚。你開始在接下來的幾天中深入分析這些高深莫測的代碼。你給它新的示例,然后進(jìn)行修改,試著找出影響程序決策的因素,對其進(jìn)行反向工程。

最終你得出一個非常令人驚訝的結(jié)論:代碼會檢測出狗的標(biāo)簽。如果它能檢測到標(biāo)簽,那么它就可以判斷對象的下部是否為棕色。如果是,則返回“cat”,否則返回“dog”。如果不能檢測到標(biāo)簽,那么它將檢查對象的左側(cè)是否比右側(cè)更黃。如果是,則返回“dog”,否則返回“cat”。

你邀請這名新生到辦公室,并把研究結(jié)果呈給他。你向他詢問,是否認(rèn)為自己真的解決了問題?在長時間的沉默之后,他終于喃喃自語道,他解決了數(shù)據(jù)集顯示的任務(wù),但他并不知道狗長什么樣,也不知道狗和貓之間有什么不同……

很明顯,他作弊了,因?yàn)樗鉀Q任務(wù)目的和你想要的目的無關(guān)。不過,他又沒有作弊,因?yàn)樗慕鉀Q方案確實(shí)是有效的。然而,其他學(xué)生的表現(xiàn)都不怎么樣。他們試圖通過問題來解決任務(wù),而不是通過原始數(shù)據(jù)集。雖然,他們的程序運(yùn)行得并不好,倒也沒有犯奇怪的錯誤。


深度學(xué)習(xí)的祝福和詛咒

深度學(xué)習(xí)是一種技術(shù),它使用一種稱為梯度反向傳播的優(yōu)化技術(shù)來生成“程序”(也稱為“神經(jīng)網(wǎng)絡(luò)”),就像上面故事中學(xué)者學(xué)生編寫的那些程序一樣。這些“程序”和優(yōu)化技術(shù)對世界一無所知,它所關(guān)心的只是構(gòu)建一組轉(zhuǎn)換和條件,將正確的標(biāo)簽分配給數(shù)據(jù)集中的正確圖像。

通過向訓(xùn)練集添加更多的數(shù)據(jù),可以消除虛假的偏差,但是,伴隨著數(shù)百萬個參數(shù)和數(shù)千個條件檢查,反向傳播生成的“程序”會非常大,非常復(fù)雜,因此它們可以鎖定更細(xì)微偏差的組合。任何通過分配正確標(biāo)簽,來統(tǒng)計(jì)優(yōu)化目標(biāo)函數(shù)的方法都可以使用,不管是否與任務(wù)的“語義精神”有關(guān)。

這些網(wǎng)絡(luò)最終能鎖定“語義正確”的先驗(yàn)嗎?當(dāng)然可以。但是現(xiàn)在有大量的證據(jù)表明,這并不是這些網(wǎng)絡(luò)分內(nèi)之事。相反的例子表明,對圖像進(jìn)行非常微小的、無法察覺的修改就可以改變檢測結(jié)果。

研究人員對訓(xùn)練過的數(shù)據(jù)集的新示例進(jìn)行了研究,結(jié)果表明,原始數(shù)據(jù)集之外的泛化要比數(shù)據(jù)集內(nèi)的泛化弱得多,因此說明,網(wǎng)絡(luò)所依賴的給定數(shù)據(jù)集具有特定的低層特性。在某些情況下,修改單個像素就足以產(chǎn)生一個新的深度網(wǎng)絡(luò)分類器。

在某種程度上,深度學(xué)習(xí)最大的優(yōu)勢就是自動創(chuàng)建沒有人會想到的特性能力,這同時也是它最大的弱點(diǎn),因?yàn)榇蠖鄶?shù)這些功能至少在語義上看起來,可以說是“可疑的”。


什么時候有意義,什么時候沒有意義?

深度學(xué)習(xí)對于計(jì)算機(jī)視覺系統(tǒng)來說無疑是一個有趣的補(bǔ)充。我們現(xiàn)在可以相對容易地“訓(xùn)練”探測器來探測那些昂貴且不切實(shí)際的物體。我們還可以在一定程度上擴(kuò)展這些檢測器,以使用更多的計(jì)算能力。

但我們?yōu)檫@種奢侈付出的代價是高昂的:我們不知道深度學(xué)習(xí)是如何做出判斷,而且我們確實(shí)知道,分類的依據(jù)很可能與任務(wù)的“語義精神”無關(guān)。而且,只要輸入數(shù)據(jù)違反訓(xùn)練集中的低水平偏差,檢測器就會出現(xiàn)失效。這些失效條件目前尚且不為人知。

因此,在實(shí)踐中,深度學(xué)習(xí)對于那些錯誤不是很嚴(yán)重,并且保證輸入不會與訓(xùn)練數(shù)據(jù)集有很大差異的應(yīng)用程序非常有用,這些應(yīng)用能夠承受5%以內(nèi)的錯誤率就沒問題,包括圖像搜索、監(jiān)視、自動化零售,以及幾乎所有不是“關(guān)鍵任務(wù)”的東西。

具有諷刺意味的是,大多數(shù)人認(rèn)為深度學(xué)習(xí)是應(yīng)用領(lǐng)域的一次革命,因?yàn)樯疃葘W(xué)習(xí)的決策具有實(shí)時性,錯誤具有重大性,甚至?xí)?dǎo)致致命的結(jié)果,如自動駕駛汽車,自主機(jī)器人(例如,最近的研究表明,基于深層神經(jīng)網(wǎng)絡(luò)的自主駕駛確實(shí)容易受到現(xiàn)實(shí)生活中的對抗性攻擊)。我只能將這種信念描述為對“不幸”的誤解。

一些人對深度學(xué)習(xí)在醫(yī)學(xué)和診斷中的應(yīng)用寄予厚望。然而,在這方面也有一些令人擔(dān)憂的發(fā)現(xiàn),例如,針對一個機(jī)構(gòu)數(shù)據(jù)的模型未能很好地檢測另一個機(jī)構(gòu)數(shù)據(jù)。這再次印證了一種觀點(diǎn):這些模型獲取的數(shù)據(jù)要比許多研究人員所希望的更淺。


數(shù)據(jù)比我們想象的要淺

出人意料的是,深度學(xué)習(xí)教會了我們一些關(guān)于視覺數(shù)據(jù)(通常是高維數(shù)據(jù))的東西,這個觀點(diǎn)十分有趣:在某種程度上,數(shù)據(jù)比我們過去認(rèn)為的要“淺”得多。

似乎有更多的方法來統(tǒng)計(jì)地分離標(biāo)有高級人類類別的可視化數(shù)據(jù)集,然后有更多的方法來分離這些“語義正確”的數(shù)據(jù)集。換句話說,這組低水平的圖像特征比我們想象的更具“統(tǒng)計(jì)意義”。這是深度學(xué)習(xí)的偉大發(fā)現(xiàn)。

如何生成“語義上合理”的方法來分離可視數(shù)據(jù)集模型的問題仍然存在,事實(shí)上,這個問題現(xiàn)在似乎比以前更難回答。


結(jié)論

深度學(xué)習(xí)已經(jīng)成為計(jì)算機(jī)視覺系統(tǒng)的重要組成部分。但是傳統(tǒng)的計(jì)算機(jī)視覺并沒有走到那一步,而且,它仍然可以用來建造非常強(qiáng)大的探測器。這些人工制作的檢測器在某些特定的數(shù)據(jù)集度量上可能無法實(shí)現(xiàn)深度學(xué)習(xí)的高性能,但是可以保證依賴于輸入的“語義相關(guān)”特性集。

深度學(xué)習(xí)提供了統(tǒng)計(jì)性能強(qiáng)大的檢測器,而且不需要犧牲特征工程,不過仍然需要有大量的標(biāo)記數(shù)據(jù)、大量GPU,以及深度學(xué)習(xí)專家。然而,這些強(qiáng)大的檢測器也會遭遇意外的失敗,因?yàn)樗鼈兊倪m用范圍無法輕易地描述(或者更確切地說,根本無法描述)。

需要注意的是,上面的討論都與“人工智能”中的AI無關(guān)。我不認(rèn)為像深度學(xué)習(xí)與解決人工智能的問題有任何關(guān)系。但我確實(shí)認(rèn)為,將深度學(xué)習(xí)、特性工程和邏輯推理結(jié)合起來,可以在廣泛的自動化空間中實(shí)現(xiàn)非常有趣和有用的技術(shù)能力。

來源:電子工程世界

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    【小白入門必看】一文讀懂深度學(xué)習(xí)計(jì)算機(jī)視覺技術(shù)及學(xué)習(xí)路線

    一、什么是計(jì)算機(jī)視覺計(jì)算機(jī)視覺,其實(shí)就是教機(jī)器怎么像我們?nèi)艘粯樱脭z像頭看看周圍的世界,然后理解它。比如說,它能認(rèn)出這是個蘋果,或者那邊有輛車。除此之外,還能把拍到的照片或者視頻轉(zhuǎn)換
    的頭像 發(fā)表于 10-31 17:00 ?1171次閱讀
    【小白入門必看】一文讀懂<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺</b>技術(shù)及<b class='flag-5'>學(xué)習(xí)</b>路線

    計(jì)算機(jī)視覺有哪些優(yōu)缺點(diǎn)

    計(jì)算機(jī)視覺作為人工智能領(lǐng)域的一個重要分支,旨在使計(jì)算機(jī)能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動了多個行業(yè)的變革,也帶來了諸多優(yōu)勢,但同時也伴隨著一些挑戰(zhàn)和局限性。以下是對
    的頭像 發(fā)表于 08-14 09:49 ?1976次閱讀

    圖像處理器與計(jì)算機(jī)視覺有什么關(guān)系和區(qū)別

    圖像處理器與計(jì)算機(jī)視覺是兩個在圖像處理領(lǐng)域緊密相連但又有所區(qū)別的概念。它們之間的關(guān)系和區(qū)別可以從多個維度進(jìn)行探討。
    的頭像 發(fā)表于 08-14 09:36 ?1011次閱讀

    機(jī)器視覺計(jì)算機(jī)視覺有什么區(qū)別

    機(jī)器視覺計(jì)算機(jī)視覺是兩個密切相關(guān)但又有所區(qū)別的概念。 一、定義 機(jī)器視覺 機(jī)器視覺,又稱為計(jì)算機(jī)
    的頭像 發(fā)表于 07-16 10:23 ?1099次閱讀

    計(jì)算機(jī)視覺的五大技術(shù)

    計(jì)算機(jī)視覺作為深度學(xué)習(xí)領(lǐng)域最熱門的研究方向之一,其技術(shù)涵蓋了多個方面,為人工智能的發(fā)展開拓了廣闊的道路。以下是對計(jì)算機(jī)
    的頭像 發(fā)表于 07-10 18:26 ?2382次閱讀

    計(jì)算機(jī)視覺的工作原理和應(yīng)用

    計(jì)算機(jī)視覺(Computer Vision,簡稱CV)是一門跨學(xué)科的研究領(lǐng)域,它利用計(jì)算機(jī)和數(shù)學(xué)算法來模擬人類視覺系統(tǒng)對圖像和視頻進(jìn)行識別、理解、分析和處理。其核心目標(biāo)在于使
    的頭像 發(fā)表于 07-10 18:24 ?3299次閱讀

    機(jī)器人視覺計(jì)算機(jī)視覺的區(qū)別與聯(lián)系

    機(jī)器人視覺計(jì)算機(jī)視覺是兩個密切相關(guān)但又有所區(qū)別的領(lǐng)域。 1. 引言 在當(dāng)今科技迅猛發(fā)展的時代,機(jī)器人和計(jì)算機(jī)視覺技術(shù)在各個領(lǐng)域發(fā)揮著越來越
    的頭像 發(fā)表于 07-09 09:27 ?1147次閱讀

    計(jì)算機(jī)視覺與人工智能的關(guān)系是什么

    引言 計(jì)算機(jī)視覺是一門研究如何使計(jì)算機(jī)能夠理解和解釋視覺信息的學(xué)科。它涉及到圖像處理、模式識別、機(jī)器學(xué)習(xí)等多個領(lǐng)域的知識。人工智能則是研究如
    的頭像 發(fā)表于 07-09 09:25 ?1334次閱讀

    計(jì)算機(jī)視覺與智能感知是干嘛的

    引言 計(jì)算機(jī)視覺(Computer Vision)是一門研究如何使計(jì)算機(jī)能夠理解和解釋視覺信息的學(xué)科。它涉及到圖像處理、模式識別、機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-09 09:23 ?1744次閱讀

    計(jì)算機(jī)視覺和機(jī)器視覺區(qū)別在哪

    計(jì)算機(jī)視覺和機(jī)器視覺是兩個密切相關(guān)但又有明顯區(qū)別的領(lǐng)域。 一、定義 計(jì)算機(jī)視覺 計(jì)算機(jī)
    的頭像 發(fā)表于 07-09 09:22 ?829次閱讀

    計(jì)算機(jī)視覺和圖像處理的區(qū)別和聯(lián)系

    計(jì)算機(jī)視覺和圖像處理是兩個密切相關(guān)但又有明顯區(qū)別的領(lǐng)域。 1. 基本概念 1.1 計(jì)算機(jī)視覺 計(jì)算機(jī)視覺
    的頭像 發(fā)表于 07-09 09:16 ?2182次閱讀

    計(jì)算機(jī)視覺在人工智能領(lǐng)域有哪些主要應(yīng)用?

    與分類是計(jì)算機(jī)視覺的基礎(chǔ)應(yīng)用之一。通過訓(xùn)練機(jī)器學(xué)習(xí)模型,計(jì)算機(jī)可以識別和分類各種圖像,如動物、植物、物體等。這種技術(shù)在許多領(lǐng)域都有應(yīng)用,如搜索引擎、社交媒體、醫(yī)療診斷等。 1.1 圖像
    的頭像 發(fā)表于 07-09 09:14 ?2798次閱讀

    計(jì)算機(jī)視覺屬于人工智能嗎

    屬于,計(jì)算機(jī)視覺是人工智能領(lǐng)域的一個重要分支。 引言 計(jì)算機(jī)視覺是一門研究如何使計(jì)算機(jī)具有視覺
    的頭像 發(fā)表于 07-09 09:11 ?2111次閱讀

    計(jì)算機(jī)視覺怎么給圖像分類

    圖像分類是計(jì)算機(jī)視覺領(lǐng)域中的一項(xiàng)核心任務(wù),其目標(biāo)是將輸入的圖像自動分配到預(yù)定義的類別集合中。這一過程涉及圖像的特征提取、特征表示以及分類器的設(shè)計(jì)與訓(xùn)練。隨著深度學(xué)習(xí)技術(shù)的飛速發(fā)展,圖像
    的頭像 發(fā)表于 07-08 17:06 ?1674次閱讀

    深度學(xué)習(xí)計(jì)算機(jī)視覺領(lǐng)域的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其中的核心技術(shù)之一,已經(jīng)在計(jì)算機(jī)視覺領(lǐng)域取得了顯著的成果。計(jì)算機(jī)
    的頭像 發(fā)表于 07-01 11:38 ?1730次閱讀
    主站蜘蛛池模板: 日韩系列 | 亚洲免费色图 | 91大神精品全国在线观看 | 久久九九国产精品怡红院 | 4480yy私人午夜a级国产 | 天天干夜夜爽天天操夜夜爽视频 | 久久精品免费在线观看 | 青青导航 | 成人av电影在线 | 九月丁香婷婷亚洲综合色 | 国产精品视频久久久久久 | 91新地址| 性免费视频 | 四虎影院在线播放 | 爽死你个放荡粗暴小淫视频 | 亚洲第一精品夜夜躁人人爽 | 国产清纯白嫩大学生正在播放 | 国产成人a一区二区 | 综合亚洲一区二区三区 | 国产精品久久久久久一级毛片 | 男人视频网 | 午夜精品久久久久久久第一页 | 香港经典a毛片免费观看爽爽影院 | 日本大黄视频 | 奇米激情| 亚洲欧美精品成人久久91 | 激情五月俺来也 | 特黄特色三级在线播放 | 国产一级特黄一级毛片 | 中文字幕第15页 | 亚洲色图久久 | 欧美精品亚洲网站 | 国产精品第9页 | 456亚洲人成影院在线观 | 亚洲伊人色一综合网 | 成人网在线观看 | 性夜影院爽黄e爽在线观看 羞羞色院91精品网站 | 色在线免费| 天天草天天草 | h视频免费| 毛片多多 |