在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

SiC MOSFET 和Si MOSFET寄生電容在高頻電源中的損耗對比

jf_pJlTbmA9 ? 來源:富昌電子 ? 作者:富昌電子 ? 2023-12-05 14:31 ? 次閱讀

引言:富昌電子(Future Electronics)一直致力于以專業的技術服務,為客戶打造個性化的解決方案,并縮短產品設計周期。在第三代半導體的實際應用領域,富昌電子結合自身的技術積累和項目經驗,落筆于SiC相關設計的系列文章。希望以此給到大家一定的設計參考,并期待與您進一步的交流。

前兩篇文章我們分別探討了SiC MOSFET的驅動電壓,以及SiC器件驅動設計中的寄生導通問題。本文作為系列文章的第三篇,會從SiC MOS寄生電容損耗與傳統Si MOS作比較,給出分析和計算過程,供設計工程師在選擇功率開關器件時參考!

電力電子行業功率器件的不斷發展,第三代半導體(SiC,GaN)代替硅半導體已經是大勢所趨。

由于Si MOSFET其輸入阻抗高,隨著反向耐壓的提高,通態電阻也急劇上升,從而限制了在高壓大電流場合的應用。為了進一步提高開關電源的效率,迫切需要一種能承受足夠高耐壓和極快開關速度,且具有很低導通電阻和寄生電容的功率半導體器件。

SiC MOSFET有極其低的導通電阻RDS(ON),導致了極其優越的正向壓降和導通損耗, 并且具有相當低的柵極電荷和非常低的漏電流,能適合超快的開關速度,更適合高電壓大電流高功率密度的應用環境。

我們都知道開關電源的頻率越高,每秒開關管改變狀態的次數就越多,開關損耗和與開關頻率成正比。

富昌電子在長期的電源電路研究中發現:開關電源中所有與開關頻率有關的損耗,最顯著的往往是開關管自身產生的損耗。

本文從MOSFET的寄生電容的角度,結合BOOST PFC電路對Si MOSFET和SiC MOSFET展開討論。

對于功率MOSFET寄生電容,在開關轉換的階段,MOSFET柵極表現為一個簡單的輸入電容。通過驅動電阻 充電或放電。實際上,柵極對漏極和原極之間發生的事情“漠不關心”。功率MOSFET可等效為下圖:

從驅動信號角度去觀察柵極,有效輸入充電電容Cg是Cgs與Cgd并聯:

因此,柵極電容充放電循環的時間常數為:

從這個公式來看,似乎暗示著MOSFET導通和關斷時的驅動電阻是一樣,實際上兩者有比較大的差別,那是因為,我們希望導通時的速率稍慢,而關斷時的速率稍快的原因。

MOSFET的寄生電容在交流系統中的表示方法為:有效輸入電容Ciss,輸出電容Coss,反向傳輸電容Crss. 它們都與MOSFET寄生電容有關:

通常也會寫成:

為了在同條件下比較Si MOSFET 和 SiC MOSFET的寄生結電容對高頻電源效率的影響。我們用全電壓輸入,輸出500w,工作頻率75kHz的PFC電路來做比較,選擇onsemi, SI MOSFET FQA6N90C 和 SiC MOSFET NTHL060N090SC1來完成該對比。

富昌電子在研究過程中了解到,輸出功率達到500W,Si MOSFET 需要兩個MOS 并聯才能滿足設計要求,本文中我們暫且忽略這個差別,先從單個的SI MOSFET和SiC MOSFET來做比較。

靜態寄生參數對比:
FQA6N90C (SI MOSFET)

NTHL060N090SC1(SiC MOSFET):

在實際MOSFET 工作過程中的電壓和電流波形如下:

MOSFET的導通過程中的驅動損耗在 t1+ t2+ t3 +t4時間內產生,而交叉時間僅為:t2+ t3,關斷過程中的驅動損耗在 t6+ t7+ t8 +t9時間內產生,而交叉時間僅為:t7+ t8 。

假設MOSFET門極的驅動電阻為10歐姆,關斷電阻為5歐姆,可得FQA6N90C時間常數Tg:

寄生電容C_ds,因為它不和柵極相連,因此不影響到MOSFET導通過程中的V-I交叉損耗。但是,該電容在MOSFET關斷時充電,在MOSFET導通時把儲能全部傾瀉到MOSFET中。因此在計算MOSFET的損耗時,該電容不能忽略,特別在離線式的AC-DC的電源中,該寄生電容嚴重影響到電源的效率。在低壓輸入的電源中,該電容對效率的影響表現的不是很明顯。

富昌電子研究結論:在同樣輸入和輸出的電參數,封裝幾乎相同的條件下,比較Si Mosfet和SiC Mosfet寄生電容帶來的損耗可知,SiC節省了60%的寄生損耗。如果采取兩顆Si MOFET并聯,達到輸出500W PFC的設計目的,Si MOFET寄生電容的損耗是SiC的3.07倍。

總結

本文針對MOS的寄生電容做出了分析,并選用onsemi同等功率的SiC與SiMOST進行了設計比較。這部分的損耗,只是電路實際工作過程中MOSFET損耗的一部分,MOSFET的損耗分析稍顯復雜, 此處沒有展開探討,富昌電子后續會連載文章,剖析電路設計中的難點。敬請期待!

  • 審核編輯 黃宇
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • SiC
    SiC
    +關注

    關注

    31

    文章

    3095

    瀏覽量

    64108
  • 損耗
    +關注

    關注

    0

    文章

    200

    瀏覽量

    16233
  • 寄生電容
    +關注

    關注

    1

    文章

    297

    瀏覽量

    19612
  • 高頻電源
    +關注

    關注

    0

    文章

    22

    瀏覽量

    14851
收藏 人收藏

    評論

    相關推薦

    SiC MOSFET 開關模塊RC緩沖吸收電路的參數優化設計

    0? 引言SiC-MOSFET 開關模塊(簡稱“SiC 模塊”)由于其高開關速度、高耐壓、低損耗的特點特別適合于高頻、大功率的應用場合。相比 Si
    發表于 04-23 11:25

    麥科信光隔離探頭碳化硅(SiCMOSFET動態測試的應用

    CMRR低(典型值<60dB),易受SiC MOSFET高速開關產生的高頻EMI影響,造成波形畸變,嚴重者會導致炸管。光隔離探頭的改進: 1.低寄生參數設計: 1pF
    發表于 04-08 16:00

    MOSFET開關損耗計算

    )與電源轉換技術來提高電源轉換效率之外,新式功率器件高效能轉換器中所扮演的重要角色,亦不容忽視。其中,Power MOSFET 目前已廣泛應用于各種
    發表于 03-24 15:03

    MOSFET開關損耗和主導參數

    本文詳細分析計算開關損耗,并論述實際狀態下功率MOSFET的開通過程和自然零電壓關斷的過程,從而使電子工程師知道哪個參數起主導作用并更加深入理解MOSFETMOSFET開關
    發表于 02-26 14:41

    高頻感應電源國產SiC碳化硅模塊替代英飛凌IGBT模塊損耗計算對比

    傾佳電子楊茜以50KW高頻感應電源應用為例,分析BASiC基本股份國產SiC模塊替代英飛凌IGBT模塊損耗計算對比: 傾佳電子楊茜致力于推動
    的頭像 發表于 02-10 09:41 ?274次閱讀
    <b class='flag-5'>高頻</b>感應<b class='flag-5'>電源</b>國產<b class='flag-5'>SiC</b>碳化硅模塊替代英飛凌IGBT模塊<b class='flag-5'>損耗</b>計算<b class='flag-5'>對比</b>

    高頻電鍍電源國產SiC碳化硅模塊替代富士IGBT模塊損耗對比

    傾佳電子楊茜以50KW高頻電鍍電源應用為例,分析BASiC基本股份國產SiC碳化硅模塊替代富士IGBT模塊損耗對比: 傾佳電子楊茜致力于推動
    的頭像 發表于 02-09 20:17 ?356次閱讀
    <b class='flag-5'>高頻</b>電鍍<b class='flag-5'>電源</b>國產<b class='flag-5'>SiC</b>碳化硅模塊替代富士IGBT模塊<b class='flag-5'>損耗</b><b class='flag-5'>對比</b>

    SiC MOSFET的參數特性

    碳化硅(SiCMOSFET作為寬禁帶半導體材料(WBG)的一種,具有許多優異的參數特性,這些特性使其高壓、高速、高溫等應用中表現出色。本文將詳細探討SiC
    的頭像 發表于 02-02 13:48 ?762次閱讀

    Si IGBT和SiC MOSFET混合器件特性解析

    Si IGBT和SiCMOSFET器件不同電流下的優異特性,一般會將的Si-IGBT和 SiC-MOSFET按照一定比例進行混合并聯使用。
    的頭像 發表于 01-21 11:03 ?1332次閱讀
    <b class='flag-5'>Si</b> IGBT和<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>混合器件特性解析

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    隨著電力電子技術的不斷進步,碳化硅MOSFET因其高效的開關特性和低導通損耗而備受青睞,成為高功率、高頻應用的首選。作為碳化硅MOSFET
    發表于 01-04 12:37

    什么是米勒鉗位?為什么碳化硅MOSFET特別需要米勒鉗位?

    間的寄生電容Cgd流過米勒電流Igd;Igd=Cgd*(dv/dt),dv/dt越大,米勒電流Igd越大。- 米勒電流Igd(紅色線)的路徑:Cgd→Rgoff→T4 →負電源軌,產生左負右正的電壓
    發表于 01-04 12:30

    深入解析晶振時鐘信號干擾源:寄生電容、雜散電容與分布電容

    現代電子電路設計,晶振時鐘信號的高頻特性使得其容易受到各種干擾。其中,寄生電容、雜散電容和分布電容
    發表于 09-26 14:49

    普通探頭和差分探頭寄生電容對測試波形的影響

    顯著的影響。本文將探討普通探頭和差分探頭的寄生電容及其對測試波形的影響。 1. 探頭寄生電容概述 寄生電容是指在探頭設計無意間形成的電容
    的頭像 發表于 09-06 11:04 ?710次閱讀

    碳化硅MOSFET的開關尖峰問題與TVS保護方案

    SiC MOSFET的開關尖峰問題,并介紹使用瞬態電壓抑制二極管(TVS)進行保護的優勢和上海雷卯電子提供的解決方案。 1. SiC MOSFET開關過程
    的頭像 發表于 08-15 17:17 ?4759次閱讀
    碳化硅<b class='flag-5'>MOSFET</b>的開關尖峰問題與TVS保護方案

    開關MOSFET為什么會有振鈴和電壓尖峰

    和門極連接存在不可避免的寄生電感。當MOSFET從導通狀態切換到截止狀態或者反之時,流過這些寄生電感的電流發生急劇變化,根據V = L(di/dt),會在
    的頭像 發表于 06-09 11:29 ?4540次閱讀

    如何更好地驅動SiC MOSFET器件?

    IGBT的驅動電壓一般都是15V,而SiC MOSFET的推薦驅動電壓各品牌并不一致,15V、18V、20V都有廠家在用。更高的門極驅動電壓有助于降低器件導通損耗SiC
    的頭像 發表于 05-13 16:10 ?886次閱讀
    主站蜘蛛池模板: 77se77亚洲欧美在线大屁股 | 狠狠操狠狠搞 | 欧美成人午夜影院 | 亚洲欧美在线播放 | 理论片国产| 国产精品丝袜xxxxxxx | 中日韩毛片 | 国产三级日本三级日产三级66 | 中国一级生活片 | 久久奈| 2021久久天天躁狠狠躁夜夜 | 在线毛片免费 | 最新日韩中文字幕 | 久久国产精品免费网站 | 国产黄色片在线观看 | 他也色在线视频 | 天天射天天干天天操 | 丁香花高清在线观看 | 一级毛片一级毛片一级毛片aa | wwwxxx亚洲| 日韩精品一级a毛片 | 中文字幕av一区二区三区 | 四虎永久免费影院在线 | 老司机狠狠k免费毛片 | 狠狠做久久深爱婷婷97动漫 | 亚色在线视频 | 男人视频在线观看 | 四虎国产精品免费久久影院 | 国产精品午夜在线观看 | 看真人一级毛片 | 亚洲性色成人 | 女主播扒开内衣让粉丝看个够 | 国产一区二区三区波多野吉衣 | 三级亚洲 | 国产小视频在线播放 | 久久久久久久综合狠狠综合 | 你懂的免费 | 狠狠干干干 | 久久婷婷是五月综合色狠狠 | 狠狠色噜噜狠狠狠狠狠色综合久久 | 天堂网2021天堂手机版 |