AI Agents 是當(dāng)下大模型領(lǐng)域備受關(guān)注的話題,用戶可以引入多個(gè)扮演不同角色的 LLM Agents 參與到實(shí)際的任務(wù)中,Agents 之間會(huì)進(jìn)行競爭和協(xié)作等多種形式的動(dòng)態(tài)交互,進(jìn)而產(chǎn)生驚人的群體智能效果。本文介紹了來自 KAUST 研究團(tuán)隊(duì)的大模型心智交互 CAMEL 框架(“駱駝”),CAMEL 框架是最早基于 ChatGPT 的 autonomous agents 知名項(xiàng)目,目前已被頂級(jí)人工智能會(huì)議 NeurIPS 2023 錄用。

論文題目:
CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society論文鏈接:https://ghli.org/camel.pdf代碼鏈接:
https://github.com/camel-ai/camel項(xiàng)目主頁:https://www.camel-ai.org/“什么神奇的技巧讓我們變得智能?竅門就是沒有竅門。智慧的力量源于我們巨大的多樣性,而不是任何單一的、完美的原則。”
——人工智能先驅(qū) 馬文·明斯基(Marvin Minsky)[1]
目前來看,在機(jī)器通向高級(jí)智能的道路上,以 ChatGPT 為代表的大模型(LLMs)應(yīng)該是必須經(jīng)過的里程碑之一,它們以聊天對(duì)話的人機(jī)交互方式在多個(gè)領(lǐng)域的復(fù)雜任務(wù)解決方面取得了非常耀眼的成就。
隨著 LLMs 的發(fā)展,AI Agents(AI 智能體)之間的交互框架也逐漸興起,尤其是在一些復(fù)雜的專業(yè)領(lǐng)域,以角色扮演等模式預(yù)置的智能體完全有能力代替人類用戶在任務(wù)中扮演的角色,同時(shí),智能體之間通過以協(xié)作和競爭形式的動(dòng)態(tài)交互往往能夠帶來意想不到的效果,這就是被 OpenAI 人工智能專家 Andrej Karpathy 等人看作是“通向 AGI 最重要的前沿研究方向”的 AI Agents。該領(lǐng)域發(fā)展的時(shí)間線如下 [2]:- “CAMEL”(駱駝:大模型心智交互框架)- 發(fā)布于 2023.3.21
- “AutoGPT” - 發(fā)布于 2023.3.30
- “BabyGPT” - 發(fā)布于 2023.4.3
- “Westworld” simulation(斯坦福西部世界小鎮(zhèn)) — 發(fā)布于 2023.4.7
作為最早基于 ChatGPT 的 autonomous agents 知名項(xiàng)目,CAMEL 重點(diǎn)探索了一種稱為角色扮演(role-playing)的新型合作代理框架,該框架可以有效緩解智能體對(duì)話過程中出現(xiàn)的錯(cuò)誤現(xiàn)象,從而有效引導(dǎo)智能體完成各種復(fù)雜的任務(wù),人類用戶只需要輸入一個(gè)初步的想法就可以啟動(dòng)整個(gè)過程。目前,CAMEL 已經(jīng)被國際人工智能頂級(jí)會(huì)議 NeurIPS 2023 錄用。
CAMEL框架
下圖展示了 CAMEL 中的 role-playing 框架,人類用戶需要首先制定一個(gè)想要實(shí)現(xiàn)的想法或目標(biāo),例如:開發(fā)一個(gè)用于股票市場的交易機(jī)器人。這項(xiàng)任務(wù)涉及的角色是 AI 助理智能體(使其扮演 Python 程序員角色)和 AI 用戶智能體(使其扮演股票交易員角色)。

作者首先為 CAMEL 設(shè)置了一個(gè)任務(wù)細(xì)化器(Task Specifier),該細(xì)化器會(huì)根據(jù)輸入的想法來制定一個(gè)較為詳細(xì)的實(shí)現(xiàn)步驟,隨后 AI 助理智能體(AI Assistant)和 AI 用戶智能體(AI User)通過聊天的方式來進(jìn)行協(xié)作通信,各自一步步完成指定的任務(wù)。
其中協(xié)作通信通過系統(tǒng)級(jí)的消息傳遞機(jī)制來實(shí)現(xiàn),令為傳遞給 AI 助理智能體的系統(tǒng)消息,為傳遞給 AI 用戶智能體的系統(tǒng)消息。隨后為 AI 助理智能體和 AI 用戶智能體分別實(shí)例化為兩個(gè) ChatGPT 模型和,相應(yīng)得到 AI 助理智能體和 AI 用戶智能體。角色分配完成后,AI 助理智能體和 AI 用戶智能體會(huì)按照指令跟隨的方式協(xié)作完成任務(wù),令為時(shí)間時(shí)刻獲得的用戶指令消息,為 AI 助理智能體給出的解決方案,因而時(shí)刻得到的對(duì)話消息集為:

CAMEL使用示例
2.1 協(xié)作角色扮演(cooperate role-playing)
CAMEL 內(nèi)置的協(xié)作式 role-playing 框架可以在人類用戶不具備專業(yè)知識(shí)的情況下,通過 Agents 之間的協(xié)作方式完成復(fù)雜任務(wù),下圖展示了 CAMEL 開發(fā)股票市場交易機(jī)器人的例子,其中 AI 助理智能體的扮演的角色是一名 Python 程序員,而 AI 用戶智能體扮演的角色為一名股票交易員。
在 role-playing 框架中,AI 智能體都具有特定領(lǐng)域的專業(yè)知識(shí),此時(shí)我們只需要指定一個(gè)原始想法的 Prompt,隨后兩個(gè)AI智能體就會(huì)圍繞著這一想法展開工作,在上圖中,用戶智能體提出交易機(jī)器人需要有對(duì)股票評(píng)論的情緒分析功能,隨后助理智能體直接給出了安裝情緒分析和股票交易所需的 python 庫的腳本。

上圖展示了 CAMEL 通過使用 embodied agent 調(diào)用 HuggingFace 提供的 Stable Diffusion 工具鏈生成駱駝科圖像的樣例,在這一過程中,embodied agent 首先會(huì)推理出駱駝科所包含的所有動(dòng)物,隨后調(diào)用擴(kuò)散模型生成圖像并進(jìn)行保存。
2.3 critic在環(huán)(critic-in-the-loop)
為了增強(qiáng) role-playing 框架的可控性,作者團(tuán)隊(duì)還為 CAMEL 設(shè)計(jì)了一種 critic-in-the-loop,這種機(jī)制受到了蒙特卡洛樹搜索(MTCS)方法的啟發(fā),它可以結(jié)合人類偏好實(shí)現(xiàn)樹搜索的決策邏輯來解決任務(wù),CAMEL 可以設(shè)置一個(gè)中間評(píng)價(jià)智能體(critic)來根據(jù)用戶智能體和助理智能體出的各種觀點(diǎn)進(jìn)行決策來完成最終任務(wù),整體流程如下圖所示。

考慮這樣一個(gè)場景,我們讓 CAMEL 主持一場很具體的科研項(xiàng)目討論會(huì),而科研項(xiàng)目的主題“大型語言模型”,CAMEL 可以將用戶智能體的角色設(shè)置為一個(gè)博士后,將助理智能體的角色設(shè)置為博士生,而中間評(píng)價(jià)智能體的角色設(shè)置為教授。任務(wù)指示博士生來幫助博士后制定研究計(jì)劃,需要圍繞大模型的倫理展開研究。
在接到任務(wù)后,博士后智能體首先拋出了關(guān)于這一項(xiàng)目的三個(gè)觀點(diǎn),表明項(xiàng)目應(yīng)該首先從調(diào)研大模型倫理方面的相關(guān)工作著手。隨后教授智能體會(huì)根據(jù)這三個(gè)觀點(diǎn)給出自己的看法。并且認(rèn)為觀點(diǎn) 2 最為合理的,即研究大模型歧視性算法。同時(shí)還會(huì)給出另外兩個(gè)觀點(diǎn)的缺陷,例如觀點(diǎn) 1 缺乏更加清晰的結(jié)構(gòu),觀點(diǎn) 3 的研究范圍太窄等等。


實(shí)驗(yàn)效果
本文的性能評(píng)估主要從三個(gè)方面進(jìn)行,并且采用兩個(gè) gpt-3.5-turbo 作為實(shí)驗(yàn)智能體,實(shí)驗(yàn)的數(shù)據(jù)集使用 CAMEL 框架生成的四個(gè) AI 數(shù)據(jù)集,其中 AI Society 和 AI Code 側(cè)重于智能體的對(duì)話效果,而 AI Math 和 AI Science 側(cè)重于智能體的問題解決能力。3.1 Agent評(píng)估在這一部分,作者從 AI Society 和 AI Code 數(shù)據(jù)集中分別隨機(jī)選擇 100 個(gè)任務(wù)進(jìn)行評(píng)估,然后使用 CAMEL 框架和單個(gè) gpt-3.5-turbo 進(jìn)行對(duì)比實(shí)驗(yàn),結(jié)果評(píng)估方面分為兩部分,一方面由人類受試者對(duì)兩種方法給出的解決方案給出 453 份投票數(shù)據(jù),來決定哪種方案更加可行。另一方面,作者提示 GPT4 模型對(duì)兩種方案直接給出評(píng)分,具體的對(duì)比數(shù)據(jù)如下表所示。
作者首先從 AI Society 數(shù)據(jù)集開始,讓模型了解人類的互動(dòng)常識(shí)和社會(huì)動(dòng)態(tài),隨后 AI Code 和其他數(shù)據(jù)集的注入,模型獲得了編程邏輯和語法的知識(shí),同時(shí)拓寬了模型對(duì)科學(xué)理論、經(jīng)驗(yàn)觀察和實(shí)驗(yàn)方法的理解。
為了進(jìn)一步評(píng)估 CAMEL 框架的代碼編寫任務(wù)解決能力,作者在 HumanEval 和 HumanEval+ 兩個(gè)評(píng)估基準(zhǔn)上進(jìn)行了實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果如下表所示。
參考文獻(xiàn)
[1]Minsky M. Society of mind[M]. Simon and Schuster, 1988.
[2] https://towardsdatascience.com/4-autonomous-ai-agents-you-need-to-know-d612a643fa92
原文標(biāo)題:NeurIPS 2023 | AI Agents先行者CAMEL:首個(gè)基于大模型的多智能體框架
文章出處:【微信公眾號(hào):智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
-
物聯(lián)網(wǎng)
+關(guān)注
關(guān)注
2929文章
46074瀏覽量
390105
原文標(biāo)題:NeurIPS 2023 | AI Agents先行者CAMEL:首個(gè)基于大模型的多智能體框架
文章出處:【微信號(hào):tyutcsplab,微信公眾號(hào):智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
聯(lián)友科技亮相2025未來汽車先行者大會(huì)
基本半導(dǎo)體亮相2025未來汽車先行者大會(huì)
芯馳科技亮相2025未來汽車先行者大會(huì)
中科創(chuàng)達(dá)亮相2025未來汽車先行者大會(huì)
上汽集團(tuán)亮相2025未來汽車先行者大會(huì)
廣汽集團(tuán)亮相2025未來汽車先行者大會(huì)
多智能體仿真中的統(tǒng)一混合模型框架研究

維智科技陶闖:AI大模型時(shí)代下時(shí)空智能的發(fā)展機(jī)遇
深圳鴻合智遠(yuǎn) 興威帆電子:RTC時(shí)鐘芯片領(lǐng)域的先行者、專注者(上)

商湯發(fā)布國內(nèi)首個(gè)病理大模型,開啟病理診斷新篇章
啟明智顯:深度融合AI技術(shù),引領(lǐng)硬件產(chǎn)品全面智能化升級(jí)

評(píng)論