在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一文盤點計算機視覺常用AI算法、應用場景及最佳學習路線圖

華清遠見工控 ? 2024-08-30 11:56 ? 次閱讀

?

在當今數字化時代,計算機視覺技術已經深入到各個領域。從自動駕駛汽車、醫療影像分析到人臉識別和圖像處理,計算機視覺的應用無處不在。對于一名成熟的人工智能工程師來說,掌握計算機視覺算法是必不可少的。

本文將介紹一些關鍵的計算機視覺算法。

一、傳統視覺算法

1. 圖像預處理

灰度化:將彩色圖像轉換成灰度圖像,以簡化后續處理。

二值化:將灰度圖像轉換成只有黑白色調的圖像,便于后續特征提取。

去噪:通過濾波器(如中值濾波、高斯濾波)去除圖像中的隨機噪聲。

圖像增強:通過直方圖均衡化、對比度增強等手段改善圖像質量。

實際應用:醫療診斷、自動駕駛、安防監控等

2. 特征提取

邊緣檢測:使用Sobel算子、Prewitt算子、Canny邊緣檢測等方法檢測圖像中的邊緣。

角點檢測:Harris角點檢測、Shi-Tomasi角點檢測等算法用于檢測圖像中的顯著角點。

特征點描述:SIFT (Scale-Invariant Feature Transform)、SURF (Speeded Up Robust Features)、ORB (Oriented FAST and Rotated BRIEF)等算法用于描述圖像中的特征點。

形狀分析:輪廓檢測、形狀匹配等方法用于識別圖像中的形狀特征。

實際應用:人臉識別、物體識別、醫療影像分析等

3. 形態學操作

膨脹:擴大圖像中的明亮區域。

腐蝕:減小圖像中的明亮區域。

開運算:先腐蝕后膨脹,用于去除小顆粒噪聲。

閉運算:先膨脹后腐蝕,用于填充小孔洞。

實際應用:工業檢測、醫療成像、文本識別與文檔分析等

4. 幾何變換

平移:移動圖像中的像素。

旋轉:旋轉圖像中的像素。

縮放:改變圖像的尺寸。

仿射變換:包括平移、旋轉和縮放的組合。

投影變換:用于矯正透視失真。

實際應用:地圖制圖、建筑和工程設計、虛擬現實和增強現實(VR/AR)等

5. 目標檢測與分類

滑動窗口:在圖像上滑動一個窗口,使用分類器檢查每個位置是否有目標存在。

Haar特征+Adaboost:使用Haar特征和Adaboost算法進行人臉檢測。

HOG (Histogram of Oriented Gradients):使用方向梯度直方圖進行目標檢測。

模板匹配:通過比較模板和圖像中的子區域來檢測相似性。

實際應用:人臉識別、自動駕駛車道線檢測、作物病蟲害檢測等

6. 結構分析

連通組件分析:識別圖像中的連通區域。

霍夫變換:檢測直線、圓等簡單幾何形狀。

RANSAC (Random Sample Consensus):用于估計參數模型,如直線擬合、平面擬合等。

實際應用:工業缺陷檢測、醫療成像、自動駕駛道路標志識別等

二、深度學習算法

1. 卷積神經網絡 (Convolutional Neural Networks, CNNs)

基本CNN架構:包含卷積層、激活函數、池化層和全連接層,用于圖像分類、物體檢測等任務。

經典神經網絡:如AlexNet、VGGNet、ResNet等,它們通過增加網絡深度、引入殘差連接等手段提高了網絡性能。

實際應用:圖像分類、物體檢測、人臉檢測與識別等

2. 物體檢測

RCNN系列:包括R-CNN、Fast R-CNN、Faster R-CNN等,通過候選區域生成和分類來檢測圖像中的多個對象。

YOLO (You Only Look Once):端到端的實時物體檢測框架,直接在輸入圖像上回歸邊界框和類別概率。

SSD (Single Shot MultiBox Detector):使用不同尺度的特征圖進行預測,提高了檢測速度。

實際應用智能安防監控、智能交通、智能家居

3. 語義分割

FCN (Fully Convolutional Networks):將全連接層替換為卷積層,輸出像素級別的分類標簽

U-Net:一種編碼器-解碼器結構,特別適用于醫學圖像分割。

Mask R-CNN:基于Faster R-CNN的擴展,能夠同時進行物體檢測和實例分割。

實際應用:自動駕駛障礙物檢測、醫學影像分析、城市規劃等

4. 實例分割

Mask R-CNN:如上所述,用于識別和分割圖像中的各個獨立對象。

Panoptic Segmentation:同時解決語義分割和實例分割的問題。

實際應用:自動駕駛障礙物識別、安防監控行為分析、醫學影像分析等

5. 關鍵點檢測

OpenPose:用于人體姿態估計,能檢測圖像中的人體關節位置。

Hourglass Network:一種遞歸的網絡結構,用于關鍵點定位。

實際應用:虛擬現實和增強現實、人體行為分析、體育賽事分析等

6. 生成對抗網絡 (Generative Adversarial Networks, GANs)

圖像生成:DCGAN (Deep Convolutional Generative Adversarial Networks),用于生成逼真的圖像。

圖像翻譯:如CycleGAN,用于風格遷移、圖像到圖像的轉換等任務。

實際應用:圖像生成、游戲NPC生成等

上述計算機視覺的多種算法都是一個成熟的人工智能工程師需要熟練掌握的知識,如果有系統學習計算機視覺的需求,那么華清遠見的AI體系課程是一個理想的選擇。從基礎理論到實戰應用的全方位內容,能夠幫助您逐步提升計算機視覺技能。

wKgaombRQpCAN_1-AAZLwozm7I4978.pngwKgaomafcB-APXTIAAjZqioxKyY584.png

初級階段:

在進行人工智能算法學習之前,我們會講解人工智能的一些基本理論知識,幫助學員構建起對人工智能的宏觀認知與工具的掌握。講解Python基礎語法、高級技巧、Python第三方庫,實現辦公自動化。同時還會講解數據結構以及Git教程,更好的提高編程效率和解決復雜問題的能力。

完成這一階段學習可匹配的職業:Python開發工程師

wKgZombRQteAYFBkAAGsy2BE-P0959.png

核心課程階段:

通過結合圖像認知與OpenCV實踐,學習圖像預處理、特征提取等關鍵技術,并通過傳統視覺項目與車道線檢測的實踐,將理論知識應用于解決實際問題。

完成這一階段學習可匹配的職業:圖像處理工程師、機器算法工程師

wKgaombRVc-AYw6IAAMW3jJ0Uko605.png

深度課程階段:

在計算機視覺領域的深度課程階段,深入剖析卷積神經網絡(CNN)的運行法則,學習它們如何通過自動提取圖像特征來實現高效的圖像識別和分類,還會詳細講解視覺經典神經網絡的結構和原理,包括但不限于傳統的特征提取網絡:ResNet、VGG等,以及兩階段以及單階段的目標檢測網絡。

完成這一階段學習可匹配的職業:視覺工程師、圖像算法工程師

wKgZombRVeSAcvrcAAG8tVM9YnU131.png

此外,課程還設置實戰項目,指導學員親手操作,使他們不僅理解理論,更能在實際項目中運用這些知識,掌握“數據采集-數據標注-數據增強-模型訓練-模型預測-模型部署-項目上線”的完整流程。通過這些深度課程,學員可以掌握必要的高級技能,來應對職場中復雜的視覺問題和挑戰。

wKgaombEWV-Abko9AASurBscSuA128.png

當然,我們的課程設計充分考慮了不同學員的學習需求和背景,學員可以根據自己的實際情況選擇適合的課程階段,不需要每個人都從基礎學起,靈活性很高。

我們的目標是為每位學員提供定制化的學習體驗,確保課程內容與個人職業發展目標和興趣點相匹配。所以無論是希望深化對卷積神經網絡的理解,還是對特定視覺神經網絡的復現感興趣,或是想探索計算機視覺在特定行業應用中的高級技術,我們的課程體系都能夠根據您的需求進行個性化的崗位匹配學習,幫助學員高效地達到學習目標,加速在人工智能領域的成長。

后臺私信雯雯老師,領取AI全體系學習路線+100余講AI視頻課程+AI實驗平臺體驗權限。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 人工智能
    +關注

    關注

    1804

    文章

    48788

    瀏覽量

    246949
  • 計算機視覺
    +關注

    關注

    9

    文章

    1706

    瀏覽量

    46594
  • AI算法
    +關注

    關注

    0

    文章

    261

    瀏覽量

    12614
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    全球唯?IBM更新量子計算路線圖:2029年交付!

    首個大規模容錯量子計算機——IBM Quantum Starling。 ? 同時IBM也推出了兩篇技術論文,詳細介紹他們是如何解決搭建大規模容錯架構的問題。 ? IBM 量子計算路線圖 ? 其實從2020年開始,IBM
    的頭像 發表于 06-15 00:01 ?4830次閱讀
    全球唯<b class='flag-5'>一</b>?IBM更新量子<b class='flag-5'>計算</b><b class='flag-5'>路線圖</b>:2029年交付!

    關于RISC-V學習路線圖推薦

    個號的RISC-V學習路線圖可以幫助學習者系統地掌握RISC-V架構的相關知識。比如以下是個較好的RISC-V
    發表于 11-30 15:21

    【小白入門必看】讀懂深度學習計算機視覺技術及學習路線

    、什么是計算機視覺計算機視覺,其實就是教機器怎么像我們人樣,用攝像頭看看周圍的世界,然后理
    的頭像 發表于 10-31 17:00 ?1127次閱讀
    【小白入門必看】<b class='flag-5'>一</b><b class='flag-5'>文</b>讀懂深度<b class='flag-5'>學習</b><b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>技術及<b class='flag-5'>學習</b><b class='flag-5'>路線</b>

    探索工業計算機的多元應用場景

    于生產線監控、數據采集、設備控制等多個場景。本文將探討工業計算機在不同領域中的多元應用場景,分析其重要性及未來發展趨勢。、制造業中的應用制造業是工業
    的頭像 發表于 10-08 15:14 ?602次閱讀
    探索工業<b class='flag-5'>計算機</b>的多元應<b class='flag-5'>用場景</b>

    RISC-V適合什么樣的應用場景

    學術和科學軟件開發社區為RISC-V軟件貢獻和開發科學應用和算法,這有助于推動RISC-V在教育和研究領域的廣泛應用。 學習工具:RISC-V的簡潔性和模塊化設計使得其成為學習計算機
    發表于 07-29 17:16

    2024學習生成式AI最佳路線圖

    本文深入探討了2024年最佳生成式AI路線圖的細節,引領我們穿越動態進展、新興趨勢以及定義這尖端領域的變革應用。引言在日新月異的人工智能領域,生成式
    的頭像 發表于 07-26 08:28 ?1052次閱讀
    2024<b class='flag-5'>學習</b>生成式<b class='flag-5'>AI</b>的<b class='flag-5'>最佳</b><b class='flag-5'>路線圖</b>

    計算機視覺技術的AI算法模型

    計算機視覺技術作為人工智能領域的個重要分支,旨在使計算機能夠像人類樣理解和解釋圖像及視頻中的信息。為了實現這
    的頭像 發表于 07-24 12:46 ?1637次閱讀

    計算機視覺的五大技術

    計算機視覺作為深度學習領域最熱門的研究方向之,其技術涵蓋了多個方面,為人工智能的發展開拓了廣闊的道路。以下是對計算機
    的頭像 發表于 07-10 18:26 ?2311次閱讀

    計算機視覺的工作原理和應用

    計算機視覺(Computer Vision,簡稱CV)是門跨學科的研究領域,它利用計算機和數學算法來模擬人類
    的頭像 發表于 07-10 18:24 ?3188次閱讀

    計算機視覺與人工智能的關系是什么

    引言 計算機視覺門研究如何使計算機能夠理解和解釋視覺信息的學科。它涉及到圖像處理、模式識別、機器學習
    的頭像 發表于 07-09 09:25 ?1243次閱讀

    計算機視覺和機器視覺區別在哪

    計算機視覺和機器視覺是兩個密切相關但又有明顯區別的領域。 、定義 計算機視覺
    的頭像 發表于 07-09 09:22 ?807次閱讀

    計算機視覺和圖像處理的區別和聯系

    數據的過程。計算機視覺的目標是使計算機能夠像人類樣“看到”和理解圖像或視頻內容。 1.2 圖像處理 圖像處理,也稱為數字圖像處理,是應用數學和計算
    的頭像 發表于 07-09 09:16 ?2127次閱讀

    計算機視覺屬于人工智能嗎

    屬于,計算機視覺是人工智能領域的個重要分支。 引言 計算機視覺門研究如何使
    的頭像 發表于 07-09 09:11 ?2021次閱讀

    計算機視覺怎么給圖像分類

    圖像分類是計算機視覺領域中的項核心任務,其目標是將輸入的圖像自動分配到預定義的類別集合中。這過程涉及圖像的特征提取、特征表示以及分類器的設計與訓練。隨著深度
    的頭像 發表于 07-08 17:06 ?1586次閱讀

    深度學習計算機視覺領域的應用

    隨著人工智能技術的飛速發展,深度學習作為其中的核心技術之,已經在計算機視覺領域取得了顯著的成果。計算機
    的頭像 發表于 07-01 11:38 ?1650次閱讀
    主站蜘蛛池模板: 日本一区二区三区视频在线 | 免费人成网ww44kk44 | 淫欲高三 | 天天爱天天插 | 4455ee日本高清免费观看 | 三级aa久久| 欧美污视频网站 | 午夜美女写真福利写视频 | 九九精品免费观看在线 | 国产人成午夜免费噼啪视频 | h视频在线观看视频观看 | 男男浪荡双性受hplay | 国产精品1区2区3区在线播放 | 天天插天天干 | 国产美女精品久久久久中文 | 精品欧美一区二区三区 | 手机在线观看免费视频 | 婷婷九月| 免费观看黄色网址 | 狠狠鲁狠狠操 | 一级毛片一片毛 | 国产叼嘿视频网站在线观看 | 四虎永久免费在线 | 亚洲午夜精品久久久久 | 97精品伊人久久久大香线焦 | 伊人啪啪| 99色在线观看| 55夜色66夜色国产精品站 | 色www 永久免费网站 | 亚洲一区二区三区四区五区六区 | 在线免费色视频 | 免费国产高清精品一区在线 | 分分精品 | 成人的天堂视频一区二区三区 | 完全免费在线视频 | 久久久久国产免费 | 日本特级淫片免费看 | 一级毛片在线免费视频 | 欧美午夜视频 | 亚洲视频在线一区二区 | 性生交酡 |