在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

特斯拉智能駕駛|從視覺優先的技術路徑到未來的挑戰?

智駕最前沿 ? 來源:智駕最前沿 ? 作者:智駕最前沿 ? 2024-09-12 08:57 ? 次閱讀

特斯拉作為全球智能駕駛領域的技術先鋒,其FSD(Full Self-Driving)方案選擇了獨特的純視覺自動駕駛路線,摒棄了激光雷達和高精度地圖的使用。特斯拉通過其自研的攝像頭感知方案及數據驅動的神經網絡,在自動駕駛領域取得了巨大進展。然而,純視覺方案在極端天氣及某些復雜場景下表現的局限性,依然是亟需解決的問題。

特斯拉智能駕駛的技術理念

1.1 純視覺自動駕駛的核心理念

特斯拉在自動駕駛領域的技術路線具有高度獨特性。不同于大多數車企采用的多傳感器融合方案,特斯拉選擇了純視覺感知的技術路徑,這意味著特斯拉的車輛完全依賴攝像頭進行環境感知,而摒棄了常見的激光雷達和高精度地圖。這一決定源于特斯拉創始人埃隆·馬斯克的長期信念:認為攝像頭的視覺感知和數據處理能力足以替代激光雷達和其他傳感器,進而實現車輛自動駕駛。這一設計思路的基礎在于對人類視覺系統的模仿。人類駕駛員依靠眼睛和大腦對環境的感知與決策,特斯拉的純視覺方案試圖通過攝像頭和神經網絡模擬這一過程。具體來說,特斯拉的車輛配備了8個攝像頭,這些攝像頭負責全方位監測車輛周圍的環境,并通過神經網絡生成三維環境模型。這些攝像頭分別覆蓋車輛的前方、后方及左右兩側,并通過協作實時收集環境數據,為自動駕駛決策提供支持。與激光雷達依賴反射激光來構建三維環境不同,特斯拉的攝像頭通過圖像處理技術生成3D場景,這種方法極大簡化了傳感器融合的復雜性,同時降低了硬件成本。

1.2 數據驅動的神經網絡

FSD系統的另一個核心競爭力在于其強大的數據驅動能力。特斯拉在全球范圍內擁有龐大的用戶基礎,這為其積累了大量的駕駛數據。自2020年FSD Beta版本在北美推出以來,特斯拉通過大量真實駕駛場景中的數據不斷優化其神經網絡模型。相比傳統的規則驅動型自動駕駛系統,特斯拉采用了端到端的神經網絡架構,通過大量數據訓練模型來代替復雜的規則編寫,極大地提升了自動駕駛系統在復雜場景下的適應能力。特斯拉在感知層提出了“BEV+Transformer+Occupancy Network”的算法框架。通過這種框架,車輛可以以類似人類大腦的方式處理復雜環境中的信息。例如,FSD系統通過攝像頭收集圖像數據,識別車輛、行人、道路標志等元素,并使用深度學習算法構建出周圍的三維場景。隨后,系統在神經網絡中進行處理,生成駕駛決策并執行。這種數據驅動的模型在面對不斷變化的環境時能夠更加靈活,且隨著數據量的增加,系統的性能和可靠性也會逐步提升。

1.3 自動駕駛算法的演進

特斯拉FSD算法的演進是一個從規則驅動向數據驅動轉變的過程。早期的自動駕駛系統依賴于大量的規則編寫和手工標注來實現感知和決策,但這種方法的局限性在于無法有效應對復雜多變的道路場景。特斯拉從2016年開始自研算法,通過不斷迭代,逐步引入更加先進的神經網絡架構。2019年,特斯拉在其算法中引入了“BEV+Transformer”架構,通過將車輛周圍的2D圖像數據轉化為鳥瞰圖視角(BEV),并結合Transformer技術提升圖像升維處理的能力。這一架構使得特斯拉FSD能夠更好地處理復雜環境中的物體識別和行為預測,尤其在處理車輛交互、動態障礙物等場景時,表現出色。2024年,特斯拉推出了FSD V12版本,這一版本標志著全球首個端到端神經網絡量產上車。這意味著從數據輸入到決策輸出的整個過程都由神經網絡完成,徹底擺脫了傳統的模塊化算法架構。特斯拉通過這一革新,實現了從繁瑣的規則編寫到高效的數據驅動的轉變,使得系統在處理復雜場景時更加靈活和準確。

特斯拉自動駕駛硬件的迭代發展

2.1 硬件架構的演進:從HW1.0到HW4.0

特斯拉的自動駕駛硬件平臺經歷了多次迭代升級,從2014年的HW1.0,特斯拉在每一代硬件的升級中,都顯著提升了計算能力、攝像頭的數量和系統的感知能力。這種硬件迭代與特斯拉的軟件發展同步進行,推動了FSD系統的不斷成熟。

? HW1.0階段(2014年):特斯拉最初的自動駕駛硬件平臺基于Mobileye的EyeQ3芯片,主要功能是提供基礎的自動駕駛輔助功能,包括自動巡航和車道保持。HW1.0僅配備了1個前置攝像頭和毫米波雷達,感知能力非常有限,主要依靠傳統的規則驅動型算法處理環境數據。這一版本并不具備完全自動駕駛的能力,更多是輔助駕駛。

? HW2.0階段(2016年):HW2.0的發布標志著特斯拉自動駕駛硬件邁入了一個全新的階段。特斯拉在這一階段引入了NVIDIA DRIVE PX2計算平臺,支持更強大的數據處理和計算能力。車輛配備了8個攝像頭,包括前置、后置及側向攝像頭,覆蓋車輛周圍的所有方向。毫米波雷達仍然保留,用于提供額外的深度感知支持。這一版本的硬件升級,使得特斯拉的車輛能夠處理更加復雜的自動駕駛任務,如自動變道和自動泊車。

? HW3.0階段(2019年):特斯拉在HW3.0階段推出了自研FSD芯片,徹底擺脫了對NVIDIA芯片的依賴。FSD芯片具備每秒2300幀的圖像處理能力,大幅提升了系統的計算能力。HW3.0配備了8個攝像頭和12個超聲波雷達,確保車輛可以全方位監測周圍環境,同時提高了感知的精確度。得益于自研芯片,特斯拉能夠更加靈活地在硬件上部署其神經網絡算法,使得FSD系統能夠在硬件上實現高度優化。

? HW4.0階段(2023年):HW4.0是特斯拉最新的自動駕駛硬件版本,這一版本延續了純視覺方案的核心理念,同時進一步增強了攝像頭的感知能力。HW4.0配備了12個攝像頭,像素從120萬提升至500萬,攝像頭的探測距離達到424米。此外,特斯拉重新引入了高精度4D毫米波雷達,以彌補純視覺方案在極端天氣或復雜光照條件下的局限性。HW4.0的處理器也得到了大幅升級,CPU內核從12個增加至20個,使得系統具備更強的計算能力,能夠應對更加復雜的駕駛場景。

wKgZombiPE-AeYmMABvdOsQJlHw639.png

特斯拉FSD硬件端迭代歷程,源自:華金證券

2.2 硬件優化的策略:以攝像頭為核心,減少冗余傳感器

在硬件架構的演進過程中,特斯拉采取了一種獨特的“減法”策略,即逐步減少對其他冗余傳感器的依賴,最終完全依賴攝像頭來完成自動駕駛的環境感知任務。特斯拉在HW3.0階段曾分批移除不同車型裝配的毫米波雷達,認為攝像頭加上數據驅動的算法足以應對大多數駕駛場景。然而,隨著技術發展和用戶反饋,特斯拉在HW4.0階段重新引入了4D毫米波雷達,尤其是在惡劣天氣下提升系統的感知能力。相比于激光雷達等高成本的傳感器,攝像頭的成本更低,且更容易與現有的神經網絡算法結合。激光雷達的高精度固然能夠提供更豐富的環境感知數據,但其價格昂貴,動輒數千美元的硬件成本使得激光雷達不適合大規模量產車型。而攝像頭的成本則大大低于激光雷達。例如,HW4.0中12顆攝像頭的硬件成本約為3600元人民幣,4D毫米波雷達的成本在500-600元之間,相比于激光雷達的高成本,特斯拉的純視覺方案在大幅降低成本的同時,仍然能夠提供足夠的環境感知能力。特斯拉這種“減法”策略的成功與其強大的算法密切相關。通過對攝像頭采集的數據進行深度處理,特斯拉的神經網絡能夠實現對環境的精準理解,并作出相應的駕駛決策。這種純視覺方案不僅降低了硬件成本,還簡化了系統的復雜性,使得FSD具備更高的市場競爭力。

2.3 硬件的自研優勢

自從HW3.0開始,特斯拉開始研發自有的FSD芯片。這一舉措為特斯拉帶來了顯著的競爭優勢。相比于依賴外部供應商的芯片,特斯拉自研的FSD芯片能夠更好地與其算法進行適配,并在處理性能上進行專門的優化。這使得特斯拉的硬件架構不僅在計算能力上更加出色,還在成本控制上擁有更強的優勢。自研芯片的一個重要優勢在于它為特斯拉的硬件開發帶來了更高的靈活性。特斯拉可以根據其自動駕駛系統的具體需求,靈活調整芯片的設計和功能。這種靈活性不僅使得硬件能夠更加高效地運行特斯拉的神經網絡算法,還大大提高了系統的性價比。此外,隨著特斯拉在自動駕駛領域積累越來越多的數據,自研硬件的價值將進一步凸顯,因為特斯拉可以在芯片層面上對算法和硬件進行同步優化,進而提升FSD的整體性能。

特斯拉自動駕駛系統的實際表現

3.1 FSD駕駛決策的擬人化表現

特斯拉FSD的一個顯著特點是其高度擬人化的駕駛決策。這一特性在最新的FSD V12版本中得到了進一步提升。FSD系統通過大量的道路行駛數據學習人類駕駛員的行為,并在復雜駕駛場景下模仿人類駕駛員的決策方式。與之前的版本相比,FSD V12在速度控制、轉向平滑度以及對突發情況的應對方面,都更加接近人類駕駛員。例如,FSD V12在紅綠燈啟停、轉向和變道過程中,能夠做到更加平穩的駕駛,極大地減少了乘客在這些操作中的頓挫感。同時,系統在遇到前方緩慢行駛的車輛時,能夠迅速判斷是否變道超車,并采取合理的速度進行變道。特斯拉通過深度學習和端到端的神經網絡訓練,使得FSD在復雜道路場景中的決策能力得到了顯著提升。此外,FSD系統在處理與其他交通參與者的互動時也表現出色。比如,系統在面對行人橫穿馬路時,能夠迅速減速并留出足夠的安全距離,隨后在行人通過后繼續加速前進。這種類似人類駕駛員的反應,使得FSD的駕駛表現更加擬人化,提升了乘客的乘坐體驗。

3.2 安全性與可靠性

特斯拉FSD在安全性方面的表現尤為突出。根據特斯拉發布的安全數據,FSD在開啟后的行車安全性顯著高于傳統駕駛模式。特斯拉的數據顯示,在開啟FSD功能的情況下,每行駛539萬英里才可能發生一起事故,而全美平均水平是每行駛67萬英里發生一起事故。這表明FSD系統能夠顯著減少駕駛過程中的潛在風險,提高行車安全性。此外,FSD系統的可靠性也在不斷提升。特斯拉的最新版本FSD V12在城市環境中的無接管行駛里程已經達到622公里,較之前的版本大幅提升。這意味著,在大多數日常駕駛場景中,車輛可以依靠FSD系統自主完成駕駛任務,而無需駕駛員頻繁干預。這一進展顯示出特斯拉自動駕駛技術在城市道路環境中的適應性和可靠性正在逐步提高。

3.3 純視覺方案的局限性

盡管特斯拉的純視覺方案在多數場景下表現優異,但在一些極端天氣或光線條件較差的情況下,攝像頭的表現仍存在一定的局限性。例如,在夜間駕駛或大霧天氣下,攝像頭的感知能力會受到限制,導致系統無法準確判斷環境中的物體。這種局限性是特斯拉重新引入毫米波雷達的原因之一,尤其是在HW4.0階段,特斯拉通過高精度4D毫米波雷達彌補了攝像頭在這些場景下的不足。

wKgaombiPGWADO0UAA8_dzMamPs681.png

此外,特斯拉FSD在面對某些長尾場景(例如非常規或極端駕駛情況)時,系統仍可能出現誤判。例如,在遇到特殊形狀或裝載過多物品的車輛時,FSD系統可能無法準確識別這些車輛的形狀,進而導致錯誤的駕駛決策。這些長尾場景雖然在實際駕駛中并不常見,但如果不能有效應對,仍可能對駕駛安全性產生影響。

特斯拉FSD在中國市場的應用與挑戰

4.1 中國市場的機遇與挑戰

中國作為全球最大的新能源汽車市場,對于特斯拉FSD而言,是一個至關重要的戰略市場。特斯拉自進入中國以來,通過其高性能的電動車和先進的自動駕駛技術,贏得了大量消費者的青睞。數據顯示,截止2023年底,特斯拉在中國市場的累計銷量已經超過170萬輛,這為FSD的推廣奠定了廣泛的用戶基礎。然而,特斯拉在中國市場推廣FSD也面臨一些獨特的挑戰。首先,中國的監管環境相對復雜,特別是在高精度地圖和數據安全方面,中國政府對自動駕駛技術的要求非常嚴格。特斯拉需要與中國的本土企業合作,確保其自動駕駛系統符合中國的法規要求。為此,特斯拉已經與百度合作,獲得了車道級的導航地圖,以支持其FSD在中國的落地。此外,特斯拉計劃在中國建立本地的數據中心,確保所有車輛數據能夠在中國境內進行存儲和處理,以符合中國的數據安全政策。

4.2 市場滲透與潛在收益

盡管面臨挑戰,特斯拉在中國市場的前景依然十分廣闊。假設FSD在中國市場的滲透率達到5%,特斯拉將在中國市場新增54.4億元的收入。特斯拉通過廣泛的用戶基礎和不斷優化的自動駕駛技術,有望在中國市場實現可觀的增長。為了加速FSD在中國市場的推廣,特斯拉已經推出了EAP(增強版自動駕駛)的訂閱服務,用戶可以按月或按季度支付費用使用部分高級自動駕駛功能。這一靈活的訂閱模式不僅增加了現有用戶對自動駕駛功能的接受度,還為未來FSD在中國市場的全面推廣奠定了基礎。

未來展望:特斯拉FSD的技術趨勢與市場競爭

5.1 技術趨勢:從視覺感知到全場景自動駕駛

未來,特斯拉將繼續深化其純視覺技術路線,同時通過硬件和軟件的持續優化,進一步提升FSD系統的性能。特斯拉在算法層面將繼續推進端到端神經網絡的應用,減少對傳統規則編寫的依賴。隨著數據量的增加,FSD系統將逐步在更復雜的駕駛場景中實現擬人化決策,最終實現全場景自動駕駛。在硬件方面,特斯拉可能會繼續優化其攝像頭和雷達的組合,通過提升攝像頭的分辨率和感知范圍,以及引入更多的高精度傳感器,進一步提升系統在極端場景中的表現能力。同時,特斯拉的自研芯片將繼續在硬件層面上為FSD的算法提供強大的計算能力支持,確保系統能夠實時處理大量數據并作出精確決策。

5.2 市場競爭:全球與中國的雙重挑戰

雖然特斯拉在全球范圍內的自動駕駛技術處于領先地位,但其面臨的市場競爭壓力正在不斷加大。國內外的汽車制造商和科技公司都在積極布局自動駕駛技術。例如,國內的蔚來、小鵬和理想等新興車企已經在智能駕駛領域取得了顯著進展,并在某些場景下與特斯拉展開了激烈競爭。在中國市場,特斯拉需要面對本土車企的強勁競爭,同時還需要適應中國市場的獨特法規要求。為了保持競爭優勢,特斯拉需要在技術上不斷創新,同時通過本地化的戰略適應中國市場的需求。此外,特斯拉還需加速自動駕駛技術的商業化進程,例如推出機器人出租車服務等新業務,以應對市場的多元化需求。

結語

特斯拉FSD方案通過其獨特的純視覺技術路線、數據驅動的端到端神經網絡,以及自研硬件的優勢,奠定了其在全球自動駕駛領域的領先地位。盡管其技術在許多方面表現出色,但在面對復雜的市場需求和嚴苛的監管環境時,特斯拉仍需繼續優化其系統性能,以確保在未來的市場競爭中繼續保持領先。同時,隨著全球自動駕駛技術的快速發展,特斯拉能否在中國等重要市場順利推廣其FSD技術,將是決定其未來市場地位的重要因素。?

參考文獻:

華金證券:特斯拉智能駕駛方案簡剖

「智駕最前沿」微信公眾號后臺回復:C-0470,獲取:特斯拉智能駕駛方案簡剖 pdf下載方式。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 特斯拉
    +關注

    關注

    66

    文章

    6331

    瀏覽量

    126819
  • 智能駕駛
    +關注

    關注

    3

    文章

    2589

    瀏覽量

    48920
  • 自動駕駛
    +關注

    關注

    785

    文章

    13930

    瀏覽量

    167007
  • FSD
    FSD
    +關注

    關注

    0

    文章

    96

    瀏覽量

    6190
收藏 人收藏

    評論

    相關推薦

    【「具身智能機器人系統」閱讀體驗】2.具身智能機器人的基礎模塊

    智能計算系統的軟件棧和硬件平臺,以及目前面臨的問題,還提到了為什么相比于自能駕駛,具身智能為什么發展比較慢,因為具身智能更加復雜,需要大算力,高實時性,高并發還需要低功耗,目前還面臨諸
    發表于 01-04 19:22

    馬斯克重申:純視覺是自動駕駛未來

    近日,特斯拉始終堅持其獨特的純視覺感知系統。這一系統摒棄了傳統的毫米波雷達,完全依賴于攝像頭與先進的人工神經網絡,以實現自動駕駛的功能。 特斯拉CEO埃隆·馬斯克近期再次就自動
    的頭像 發表于 12-04 14:09 ?507次閱讀

    特斯拉智能駕駛未來發展

    特斯拉作為該領域的先行者,通過對算法、硬件、數據閉環和市場戰略的深度布局,為自動駕駛行業的發展提供了重要借鑒。 ? 特斯拉智能駕駛歷史復盤
    的頭像 發表于 11-16 16:49 ?1348次閱讀
    <b class='flag-5'>從</b><b class='flag-5'>特斯拉</b>看<b class='flag-5'>智能</b><b class='flag-5'>駕駛</b><b class='flag-5'>未來</b>發展

    特斯拉FSD,全棧自研智能駕駛未來

    技術已然成為各車企研發的主要方向之一。在眾多自動駕駛技術的探索者中,特斯拉(Tesla)憑借FSD(Full Self-Driving)系統,占據了行業的領先地位。FSD系統自發布以來
    的頭像 發表于 10-29 16:27 ?461次閱讀
    <b class='flag-5'>特斯拉</b>FSD,<b class='flag-5'>從</b>全棧自研<b class='flag-5'>到</b><b class='flag-5'>智能</b><b class='flag-5'>駕駛</b>的<b class='flag-5'>未來</b>

    智能駕駛未來發展方向

    能力,已經成為支撐高級別自動駕駛落地應用的關鍵技術未來,超級人工智能將助力車端自動駕駛模型實現從模仿人類
    的頭像 發表于 10-24 09:09 ?558次閱讀

    智能駕駛挑戰與機遇

    智能駕駛作為未來交通運輸發展的重要方向,正逐步進入大眾視野,并帶來了諸多機遇與挑戰。以下是對智能駕駛
    的頭像 發表于 10-23 16:00 ?1030次閱讀

    如何利用FPGA技術革新視覺人工智能應用?

    嵌入式視覺人工智能應用通過在邊緣實現高度復雜的實時視頻流處理和決策,正在為各行各業帶來變革。這些應用范圍自動駕駛
    的頭像 發表于 10-16 08:03 ?501次閱讀
    如何利用FPGA<b class='flag-5'>技術</b>革新<b class='flag-5'>視覺</b>人工<b class='flag-5'>智能</b>應用?

    中國電動車企競相角逐自動駕駛領域,向特斯拉發起技術挑戰

    中國的自動駕駛技術競賽正以前所未有的激烈態勢展開,各大電動汽車廠商競相加速研發先進的駕駛輔助系統(ADAS),旨在通過技術創新吸引消費者,并挑戰
    的頭像 發表于 09-27 15:26 ?1472次閱讀

    華為智能駕駛發展路徑探討

    隨著全球科技的迅速發展,汽車產業正經歷著機械化向智能化的發展轉型,而智能駕駛技術則是這一變革的核心推動力。全球各大汽車制造商和科技公司紛紛
    的頭像 發表于 09-19 10:09 ?1645次閱讀
    華為<b class='flag-5'>智能</b><b class='flag-5'>駕駛</b>發展<b class='flag-5'>路徑</b>探討

    自動駕駛未來之路:智能網聯與單車智能的交融

    隨著全球科技的飛速進步,自動駕駛技術已從實驗室概念逐漸走向商業化實踐,引領著未來交通出行的革命。然而,關于自動駕駛技術的具體發展
    的頭像 發表于 08-30 14:35 ?1633次閱讀

    智能駕駛時代下的EMC挑戰與防護策略

    一、 智能駕駛時代的EMC挑戰: 自從 特斯拉 于2014年正式進入中國市場以來,電動汽車及其智能駕駛
    的頭像 發表于 08-28 20:10 ?385次閱讀
    <b class='flag-5'>智能</b><b class='flag-5'>駕駛</b>時代下的EMC<b class='flag-5'>挑戰</b>與防護策略

    無人駕駛汽車需謹慎應對及存在的風險挑戰

    自動駕駛技術近期在出租車行業的滲透,成為了公眾熱議的焦點,其安全性、商業化路徑等問題再度激發了廣泛討論。隨著人工智能技術的飛躍,特別是深度
    的頭像 發表于 07-13 16:51 ?2603次閱讀

    未來已來,多傳感器融合感知是自動駕駛破局的關鍵

    的架構,預計未來許多智能駕駛團隊都會引入“占用網絡”來提升系統能力。多維像素的應用前景非常廣闊。昱感微的融合感知技術+BEV +Transformer+占用網格有望成為L3/L4級自動
    發表于 04-11 10:26

    車內語音識別技術智能駕駛的核心要素

    化的服務。本文將深入探討車內語音識別技術智能駕駛中的應用、挑戰以及未來的發展趨勢。 二、車內語音識別
    的頭像 發表于 02-19 11:42 ?860次閱讀

    車內語音識別技術:重塑智能駕駛未來

    個性化、智能化的服務。本文將深入探討車內語音識技術智能駕駛中的應用、挑戰以及未來的發展趨勢。
    的頭像 發表于 02-19 10:09 ?734次閱讀
    主站蜘蛛池模板: 成人欧美一区二区三区白人 | 亚洲一区二区三区免费观看 | 一级特色黄大片 | 久久久精品久久久久久久久久久 | a理论片| 18videosex欧美69 | www.国产一区二区三区 | 乡村乱人伦短小说 | 日韩亚洲人成在线综合日本 | 中文在线免费看影视 | 国产精品网站在线进入 | 伊人91在线 | 欧美操穴 | 国内真实实拍伦视频在线观看 | 波多野结衣在线一区 | 韩国最新三级网站在线播放 | 99久久99久久 | 成人欧美一区二区三区小说 | 亚洲αv久久久噜噜噜噜噜 亚洲аv电影天堂网 | 久久综合狠狠综合狠狠 | 亚洲人成人77777网站 | 久久精品免费 | 天天干夜夜艹 | 97视频免费上传播放 | 看大片全色黄大色黄 | 99成人 | 色婷婷综合激情视频免费看 | 婷婷午夜 | 一区二区不卡在线观看 | 天天干天天干 | 亚洲免费成人 | 天堂网站www天堂资源在线 | 97射射| 日本三级日本三级日本三级极 | 美女视频大全美女视频黄 | 欧美精品video | 手机在线看片你懂得 | 天天拍天天色 | 免费观看片 | 国产女同在线观看 | 亚洲影院手机版777点击进入影院 |