???導讀
隨著大數據概念的火熱,啤酒與尿布的故事廣為人知。我們如何發現買啤酒的人往往也會買尿布這一規律?數據挖掘中的用于挖掘頻繁項集和關聯規則的Apriori算法可以告訴我們。本文首先對Apriori算法進行簡介,而后進一步介紹相關的基本概念,之后詳細的介紹Apriori算法的具體策略和步驟,最后給出Python實現代碼。
1Apriori算法簡介
Apriori算法是經典的挖掘頻繁項集和關聯規則的數據挖掘算法。A priori在拉丁語中指"來自以前"。當定義問題時,通常會使用先驗知識或者假設,這被稱作"一個先驗"(a priori)。Apriori算法的名字正是基于這樣的事實:算法使用頻繁項集性質的先驗性質,即頻繁項集的所有非空子集也一定是頻繁的。Apriori算法使用一種稱為逐層搜索的迭代方法,其中k項集用于探索(k+1)項集。首先,通過掃描數據庫,累計每個項的計數,并收集滿足最小支持度的項,找出頻繁1項集的集合。該集合記為L1。然后,使用L1找出頻繁2項集的集合L2,使用L2找出L3,如此下去,直到不能再找到頻繁k項集。每找出一個Lk需要一次數據庫的完整掃描。Apriori算法使用頻繁項集的先驗性質來壓縮搜索空間。
2基本概念
項與項集:設itemset={item1, item_2, …, item_m}是所有項的集合,其中,item_k(k=1,2,…,m)成為項。項的集合稱為項集(itemset),包含k個項的項集稱為k項集(k-itemset)。
事務與事務集:一個事務T是一個項集,它是itemset的一個子集,每個事務均與一個唯一標識符Tid相聯系。不同的事務一起組成了事務集D,它構成了關聯規則發現的事務數據庫。
關聯規則:關聯規則是形如A=>B的蘊涵式,其中A、B均為itemset的子集且均不為空集,而A交B為空。
支持度(support):關聯規則的支持度定義如下:
其中表示事務包含集合A和B的并(即包含A和B中的每個項)的概率。注意與P(A or B)區別,后者表示事務包含A或B的概率。
置信度(confidence):關聯規則的置信度定義如下:
項集的出現頻度(support count):包含項集的事務數,簡稱為項集的頻度、支持度計數或計數。
頻繁項集(frequent itemset):如果項集I的相對支持度滿足事先定義好的最小支持度閾值(即I的出現頻度大于相應的最小出現頻度(支持度計數)閾值),則I是頻繁項集。
強關聯規則:滿足最小支持度和最小置信度的關聯規則,即待挖掘的關聯規則。
3實現步驟
一般而言,關聯規則的挖掘是一個兩步的過程:
a. 找出所有的頻繁項集
b. 由頻繁項集產生強關聯規則
3.1挖掘頻繁項集
3.1.1相關定義
連接步驟:頻繁(k-1)項集Lk-1的自身連接產生候選k項集Ck
Apriori算法假定項集中的項按照字典序排序。如果Lk-1中某兩個的元素(項集)itemset1和itemset2的前(k-2)個項是相同的,則稱itemset1和itemset2是可連接的。所以itemset1與itemset2連接產生的結果項集是{itemset1[1], itemset1[2], …, itemset1[k-1], itemset2[k-1]}。連接步驟包含在下文代碼中的create_Ck函數中。
剪枝策略
由于存在先驗性質:任何非頻繁的(k-1)項集都不是頻繁k項集的子集。因此,如果一個候選k項集Ck的(k-1)項子集不在Lk-1中,則該候選也不可能是頻繁的,從而可以從Ck中刪除,獲得壓縮后的Ck。下文代碼中的is_apriori函數用于判斷是否滿足先驗性質,create_Ck函數中包含剪枝步驟,即若不滿足先驗性質,剪枝。
刪除策略
基于壓縮后的Ck,掃描所有事務,對Ck中的每個項進行計數,然后刪除不滿足最小支持度的項,從而獲得頻繁k項集。刪除策略包含在下文代碼中的generate_Lk_by_Ck函數中。
3.1.2 步驟
每個項都是候選1項集的集合C1的成員。算法掃描所有的事務,獲得每個項,生成C1(見下文代碼中的create_C1函數)。然后對每個項進行計數。然后根據最小支持度從C1中刪除不滿足的項,從而獲得頻繁1項集L1。
對L1的自身連接生成的集合執行剪枝策略產生候選2項集的集合C2,然后,掃描所有事務,對C2中每個項進行計數。同樣的,根據最小支持度從C2中刪除不滿足的項,從而獲得頻繁2項集L2。
對L2的自身連接生成的集合執行剪枝策略產生候選3項集的集合C3,然后,掃描所有事務,對C3每個項進行計數。同樣的,根據最小支持度從C3中刪除不滿足的項,從而獲得頻繁3項集L3。
以此類推,對Lk-1的自身連接生成的集合執行剪枝策略產生候選k項集Ck,然后,掃描所有事務,對Ck中的每個項進行計數。然后根據最小支持度從Ck中刪除不滿足的項,從而獲得頻繁k項集。
3.2 由頻繁項集產生關聯規則
一旦找出了頻繁項集,就可以直接由它們產生強關聯規則。產生步驟如下:
對于每個頻繁項集itemset,產生itemset的所有非空子集(這些非空子集一定是頻繁項集);
對于itemset的每個非空子集s,如果
4樣例以及Python實現代碼
下圖是《數據挖掘:概念與技術》(第三版)中挖掘頻繁項集的樣例圖解。
本文基于該樣例的數據編寫Python代碼實現Apriori算法。代碼需要注意如下兩點:
由于Apriori算法假定項集中的項是按字典序排序的,而集合本身是無序的,所以我們在必要時需要進行set和list的轉換;
由于要使用字典(support_data)記錄項集的支持度,需要用項集作為key,而可變集合無法作為字典的key,因此在合適時機應將項集轉為固定集合frozenset。
"""
# Python 2.7
# Filename: apriori.py
# Author: llhthinker
# Email: hangliu56[AT]gmail[DOT]com
# Blog: http://www.cnblogs.com/llhthinker/p/6719779.html
# Date: 2017-04-16
"""
def load_data_set():
"""
Load a sample data set (From Data Mining: Concepts and Techniques, 3th Edition)
Returns:
A data set: A list of transactions. Each transaction contains several items.
"""
data_set = [['l1', 'l2', 'l5'], ['l2', 'l4'], ['l2', 'l3'],
['l1', 'l2', 'l4'], ['l1', 'l3'], ['l2', 'l3'],
['l1', 'l3'], ['l1', 'l2', 'l3', 'l5'], ['l1', 'l2', 'l3']]
return data_set
def create_C1(data_set):
"""
Create frequent candidate 1-itemset C1 by scaning data set.
Args:
data_set: A list of transactions. Each transaction contains several items.
Returns:
C1: A set which contains all frequent candidate 1-itemsets
"""
C1 = set()
for t in data_set:
for item in t:
item_set = frozenset([item])
C1.add(item_set)
return C1
def is_apriori(Ck_item, Lksub1):
"""
Judge whether a frequent candidate k-itemset satisfy Apriori property.
Args:
Ck_item: a frequent candidate k-itemset in Ck which contains all frequent
candidate k-itemsets.
Lksub1: Lk-1, a set which contains all frequent candidate (k-1)-itemsets.
Returns:
True: satisfying Apriori property.
False: Not satisfying Apriori property.
"""
for item in Ck_item:
sub_Ck = Ck_item - frozenset([item])
if sub_Ck not in Lksub1:
return False
return True
def create_Ck(Lksub1, k):
"""
Create Ck, a set which contains all all frequent candidate k-itemsets
by Lk-1's own connection operation.
Args:
Lksub1: Lk-1, a set which contains all frequent candidate (k-1)-itemsets.
k: the item number of a frequent itemset.
Return:
Ck: a set which contains all all frequent candidate k-itemsets.
"""
Ck = set()
len_Lksub1 = len(Lksub1)
list_Lksub1 = list(Lksub1)
for i in range(len_Lksub1):
for j in range(1, len_Lksub1):
l1 = list(list_Lksub1[i])
l2 = list(list_Lksub1[j])
l1.sort()
l2.sort()
if l1[0:k-2] == l2[0:k-2]:
Ck_item = list_Lksub1[i] | list_Lksub1[j]
# pruning
if is_apriori(Ck_item, Lksub1):
Ck.add(Ck_item)
return Ck
def generate_Lk_by_Ck(data_set, Ck, min_support, support_data):
"""
Generate Lk by executing a delete policy from Ck.
Args:
data_set: A list of transactions. Each transaction contains several items.
Ck: A set which contains all all frequent candidate k-itemsets.
min_support: The minimum support.
support_data: A dictionary. The key is frequent itemset and the value is support.
Returns:
Lk: A set which contains all all frequent k-itemsets.
"""
Lk = set()
item_count = {}
for t in data_set:
for item in Ck:
if item.issubset(t):
if item not in item_count:
item_count[item] = 1
else:
item_count[item] += 1
t_num = float(len(data_set))
for item in item_count:
if (item_count[item] / t_num) >= min_support:
Lk.add(item)
support_data[item] = item_count[item] / t_num
return Lk
def generate_L(data_set, k, min_support):
"""
Generate all frequent itemsets.
Args:
data_set: A list of transactions. Each transaction contains several items.
k: Maximum number of items for all frequent itemsets.
min_support: The minimum support.
Returns:
L: The list of Lk.
support_data: A dictionary. The key is frequent itemset and the value is support.
"""
support_data = {}
C1 = create_C1(data_set)
L1 = generate_Lk_by_Ck(data_set, C1, min_support, support_data)
Lksub1 = L1.copy()
L = []
L.append(Lksub1)
for i in range(2, k+1):
Ci = create_Ck(Lksub1, i)
Li = generate_Lk_by_Ck(data_set, Ci, min_support, support_data)
Lksub1 = Li.copy()
L.append(Lksub1)
return L, support_data
def generate_big_rules(L, support_data, min_conf):
"""
Generate big rules from frequent itemsets.
Args:
L: The list of Lk.
support_data: A dictionary. The key is frequent itemset and the value is support.
min_conf: Minimal confidence.
Returns:
big_rule_list: A list which contains all big rules. Each big rule is represented
as a 3-tuple.
"""
big_rule_list = []
sub_set_list = []
for i in range(0, len(L)):
for freq_set in L[i]:
for sub_set in sub_set_list:
if sub_set.issubset(freq_set):
conf = support_data[freq_set] / support_data[freq_set - sub_set]
big_rule = (freq_set - sub_set, sub_set, conf)
if conf >= min_conf and big_rule not in big_rule_list:
# print freq_set-sub_set, " => ", sub_set, "conf: ", conf
big_rule_list.append(big_rule)
sub_set_list.append(freq_set)
return big_rule_list
if __name__ == "__main__":
"""
Test
"""
data_set = load_data_set()
L, support_data = generate_L(data_set, k=3, min_support=0.2)
big_rules_list = generate_big_rules(L, support_data, min_conf=0.7)
for Lk in L:
print "="*50
print "frequent " + str(len(list(Lk)[0])) + "-itemsets\t\tsupport"
print "="*50
for freq_set in Lk:
print freq_set, support_data[freq_set]
print "Big Rules"
for item in big_rules_list:
print item[0], "=>", item[1], "conf: ", item[2]
代碼運行結果截圖如下:
-
Apriori算法
+關注
關注
0文章
14瀏覽量
10578 -
python
+關注
關注
56文章
4807瀏覽量
85038
原文標題:Apriori算法介紹(Python實現)
文章出處:【微信號:AI_shequ,微信公眾號:人工智能愛好者社區】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論