91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

為什么選對激光波長對拉曼光譜很重要

jf_64961214 ? 來源:jf_64961214 ? 作者:jf_64961214 ? 2025-04-29 09:13 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

對于剛接觸拉曼光譜的研究者,最常提出的問題是:"我需要什么激光激發波長?" 答案顯然取決于待測材料本身。材料的拉曼散射截面及其物理光學特性都至關重要。若樣品對激發波長透明且足夠薄,可能會檢測到基底材料的光譜貢獻,這種貢獻既可能是拉曼散射也可能是光致發光。

拉曼光譜中的激光器有許多不同的波長,通常可選擇的范圍從紫外,可見光到近紅外等等。對于某一個特定應用的比較好波長并不總是顯而易見的,拉曼實驗中的優化需要考慮很多變量,而變量中很多都與波長相關。

首先,拉曼信號非常弱。它來自于樣品材料中的光子 - 聲子相互作用,而這是一個強度很小的過程。另外,拉曼散射強度與激發波長的四次方成反比,這意味著在長波長激光激發的拉曼信號更加弱。

選擇激發波長時的另一個考慮因素是材料光密度隨波長的變化。如果材料是透明的,則激光束的焦深將由透鏡的數值孔徑、激光的波長以及該波長處樣品折射率的實際分量決定。但是,如果樣品不透明,則光穿透深度將不是由物理光學元件決定的,而是由樣品在該波長下的吸收率決定的。這些情況使許多光譜學家能夠通過改變激發波長來對半導體等材料進行深度剖析。通常,激發波長越長,光穿透樣品的深度就越深。市售可見波長激光器的范圍所提供的半導體深度穿透變化與某些微電子器件的制造深度相匹配。

785nm做拉曼的優勢

拉曼光譜中最常用的波長是785nm。它兼顧了信號強度、熒光干擾、探測器效率、成本效益和激光器之間的比較好平衡。當然,具體的波長還要取決于具體的應用。

1. 熒光抑制優勢

785nm 屬于近紅外波段,其能量相對較低,能夠大幅降低樣品本底熒光的激發概率。在生物、高分子材料等容易產生熒光的樣品檢測里,這種特性尤為重要,它可以讓拉曼信號更加清晰地呈現出來。在生物樣品(細胞/組織)、碳材料(石墨烯/碳納米管)、染料/色素等強熒光體系中,785nm可有效提取拉曼信號。

2. 穿透深度與生物兼容性

較低的光子能量使得 785nm 激光器對樣品造成的熱效應和光化學損傷較小。這一優勢讓它非常適合用于活體組織、有機分子以及納米材料等對光較為敏感的樣品分析。

3. 信噪比優化平衡

785nm 激光處于硅基探測器(如 CCD)的高靈敏度響應范圍內,這樣就無需使用成本較高的制冷型探測器,從而降低了設備的整體成本。

4. 降低光損傷風險

較低的光子能量使得 785nm 激光器對樣品造成的熱效應和光化學損傷較小。這一優勢讓它非常適合用于活體組織、有機分子以及納米材料等對光較為敏感的樣品分析。785nm激光器在常規拉曼檢測中實現了熒光抑制、穿透深度、檢測靈敏度的比較好平衡,是生物醫學、材料科學等領域的理想選擇。對于特殊需求(如深色樣品需1064nm,無機材料需532nm),建議采用多波長聯用系統。

審核編輯 黃宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 激光
    +關注

    關注

    20

    文章

    3475

    瀏覽量

    67533
  • 波長
    +關注

    關注

    0

    文章

    65

    瀏覽量

    22738
  • 拉曼光譜
    +關注

    關注

    0

    文章

    92

    瀏覽量

    3007
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    光譜專題2 | 光譜中的共聚焦方式,您選對了嗎?

    光譜專題2|光譜中的共聚焦方式,您選對了嗎?
    的頭像 發表于 07-23 11:05 ?93次閱讀
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>專題2 | <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>中的共聚焦方式,您<b class='flag-5'>選對</b>了嗎?

    上海光機所在同步泵浦超快光纖激光器方面取得進展

    圖1 GSD同步泵浦光纖激光器實驗裝置示意圖 近期,中國科學院上海光學精密機械研究所空天激光技術與系統部周佳琦研究員團隊,在同步泵浦超快
    的頭像 發表于 07-02 06:38 ?91次閱讀
    上海光機所在同步泵浦超快<b class='flag-5'>拉</b><b class='flag-5'>曼</b>光纖<b class='flag-5'>激光</b>器方面取得進展

    光譜專題1 | 光譜揭秘:新手也能輕松邁入光譜學之門

    你是否想過,一束光照射物質后,能揭開其分子層面的秘密?今天,就讓我們走進神奇的光譜世界,哪怕是光譜學小白,也能輕松入門!光照射物質時,大部分光子如同調皮的孩子,以瑞利散射的形式“原
    的頭像 發表于 06-23 11:07 ?1471次閱讀
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>專題1 | <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>揭秘:新手也能輕松邁入<b class='flag-5'>光譜</b>學之門

    應用介紹 | 單光子計數光譜

    單光子計數光譜實驗裝置示意圖脈沖激光聚焦在樣品表面,激發樣品產生熒光和散射,單光子探測器
    的頭像 發表于 05-20 16:07 ?254次閱讀
    應用介紹 | 單光子計數<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>

    超窄帶低波數濾光片的新升級(from 350nm to 3000nm)

    超窄帶陷波濾光片(Bragg Notch Filter,簡稱BNF)和帶通濾光片(Bragg Bandpass Filter,簡稱BPF)是目前實現超低波數光譜(通常50cm-1以下才稱為超低波數
    的頭像 發表于 04-09 16:54 ?346次閱讀
    超窄帶低波數<b class='flag-5'>拉</b><b class='flag-5'>曼</b>濾光片的新升級(from 350nm to 3000nm)

    激光焊錫波長怎么選擇

    激光焊錫技術中,選擇915nm和976nm的波長主要是基于錫對這些波長激光具有良好的吸收特性。在激光焊接過程中,
    的頭像 發表于 02-24 14:35 ?610次閱讀
    <b class='flag-5'>激光</b>焊錫<b class='flag-5'>波長</b>怎么選擇

    光譜在食品安全檢測中的應用

    與紅外光譜相比,光譜的適用性更好。光譜技術具
    的頭像 發表于 01-07 14:19 ?770次閱讀
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>在食品安全檢測中的應用

    高壓放大器在氣體光譜檢測技術研究中的應用

    實驗名稱:氣體光譜檢測裝置的設計與搭建 測試目的:開展氣體光譜檢測技術的研究,并設計基于
    的頭像 發表于 12-12 10:57 ?540次閱讀
    高壓放大器在氣體<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>檢測技術研究中的應用

    科學家將光譜的測量速率提高100倍

    專門設計和制造的光譜儀的圖像,其性能比任何其他系統高出100倍。 東京大學光子科學與技術研究所的研究人員 Takuma Nakamura、Kazuki Hashimoto 和 Takuro
    的頭像 發表于 11-15 06:24 ?370次閱讀

    ?選對波長對在固化時候的重要

    在現代工業生產和科學研究中,固化過程扮演著至關重要的角色。無論是醫療設備的制造、電子產品的組裝,還是實驗室中的光學實驗,固化都是確保產品質量和性能的關鍵步驟。而在固化過程中,選擇合適的波長是至關重要
    的頭像 發表于 11-08 14:15 ?847次閱讀
    ?<b class='flag-5'>選對</b><b class='flag-5'>波長</b>對在固化時候的<b class='flag-5'>重要</b>性

    使用光譜檢測組織的惡性變化

    介紹 準確、快速、無創地檢測和診斷組織中的惡性疾病是生物醫學研究的重要目標。漫反射、熒光光譜光譜等光學方法都已被研究作為實現這一目標的
    的頭像 發表于 10-17 06:32 ?530次閱讀
    使用<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>檢測組織的惡性變化

    太赫茲光譜

    圖 1:顯示不同光譜技術對應的電磁波譜。 光譜通常在可見光 (532 nm) 或近紅外光 (785 nm) 中使用,而紅外吸收光譜用于
    的頭像 發表于 09-26 10:02 ?839次閱讀
    太赫茲<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>簡

    紫外光譜在微晶硅薄膜結晶度分析中的優勢

    的結晶度,其中光譜最快捷,在短短幾秒鐘內,波長或偏振的變化就能夠揭示出樣品的相關信息。美能晶化率測試儀采用325激光器,優化紫外光路設計
    的頭像 發表于 09-10 08:06 ?990次閱讀
    紫外<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>在微晶硅薄膜結晶度分析中的優勢

    光譜的原理及其應用

    分子振動、轉動方面信息,并應用于分子結構研究的一種分析方法。 是一種光散射技術,光照射到物質上發生彈性散射和非彈性散射。彈性散射的散射光是與激發光波長相同的成分,非彈性散射的散射光有比激發
    的頭像 發表于 08-26 06:22 ?1165次閱讀

    精準捕捉信號——時間門控光譜系統實驗結果深度解析

    得的實驗結果,展示其在實際應用中的出色表現。 01、系統簡介 如上次所述,時間門控光譜系統通過使用Princeton IsoPlane零像散光柵光譜儀,配合逐光IsCMOS時間分辨
    的頭像 發表于 08-13 10:38 ?904次閱讀
    精準捕捉<b class='flag-5'>拉</b><b class='flag-5'>曼</b>信號——時間門控<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光譜</b>系統實驗結果深度解析
    主站蜘蛛池模板: 色婷婷综合缴情综六月 | 黄色网址日本 | 黄色免费大全 | 色综合五月婷婷 | 在线播放国产一区 | 亚洲毛片网站 | 欧美色乱| 欧美成人天天综合天天在线 | 午夜在线播放视频 | 欧美午夜在线视频 | 黄色一区二区三区 | 久久久久久人精品免费费看 | 一二三区乱码一区二区三区码 | 欧美成人3d动漫在线播放网站 | 天天干影视 | 中文字幕久久精品波多野结 | 黄色网址在线免费观看 | 国产精品美女免费视频大全 | 日韩一级精品视频在线观看 | 亚洲黄网免费 | 婷婷色5月| 新午夜影院 | 亚洲精品久久婷婷爱久久婷婷 | 欧美天天射 | 五月婷婷丁香六月 | 特级黄色免费片 | 国产精品入口免费视频 | 久久男人网| www.久久在线 | 美女视频黄免费 | 在线天堂中文字幕 | 日本黄色绿像 | 同性男男肉交短文 | 欧美在线视频免费播放 | 亚洲精品中文字幕乱码三区一二 | 妖精视频一区二区三区 | 极品美女洗澡后露粉嫩木耳视频 | 日处女穴| 欧美一区二区三区视频 | 国产成人精品日本亚洲语音1 | 欧美成人在线影院 |