在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

MIT研發新型攝影光學元件,開啟光學成像新紀元

MEMS ? 來源:未知 ? 作者:工程師郭婷 ? 2018-08-24 15:07 ? 次閱讀

據麥姆斯咨詢報道,麻省理工學院(Massachu-setts Institute of Technology,MIT)的研究人員開發出了新型攝影光學元件,該器件是基于光學元件中光線的反射時間來捕捉圖像,代替了依賴光學元件排列的傳統方法。研究人員說,該新成像原理為時間/深度相機打開了傳統攝影光學元件無法觸及的新世界。具體地講,MIT研究人員設計了一款新型光學元件,用于名為“條紋相機(streak camera)”的超快傳感器,可分辨超短光脈沖圖像。

目前,條紋相機及其他超快相機已被用于拍攝每秒1萬億幀的視頻、掃描閉合的書籍、提供3D場景的深度地圖以及其他應用。由于此類相機依靠傳統光學元件拍攝圖像,因此存在著各種各樣的設計限制。例如,對于以毫米或厘米為單位的定焦透鏡來說,透鏡與成像傳感器的距離必須等于或大于給定焦距,才能捕捉到圖像,這就意味著鏡頭必須很長。

MIT媒體實驗室(MIT Media Lab)的研究人員近期發表的論文提出了一種新技術,該技術可讓光信號在透鏡系統內精確定位的鏡子之間來回反射。快速成像傳感器可在每次反射時間內捕捉單獨的圖像,從而成像出一系列圖像:每幅圖像均對應于不同的時間點以及與透鏡不同的距離。同時,每幅圖像均可在特定的時間被訪問。MIT研究人員將這種技術稱為“時間折疊光學元件(time folded optics)”。該論文第一作者Barmak Heshmat認為:“當你手握快速傳感器相機,來分辨通過光學元件的光時,你就可利用時間交換空間。這就是‘時間折疊(time folding)’的核心思想:你在此時看光,此時光傳播的時間就等于你此時與光源的距離。因此就可以用新方法來排列光學元件,也就能實現以往難以企及的拍攝場景。

”新型光學元件架構包括了一組半反射式的平行鏡子,用于減少或“折疊”每次光線在鏡子間反射的焦距。研究人員通過在透鏡與傳感器之間放置一組鏡子,可在不影響圖像捕捉的前提下,將光學元件的排列距離縮減一個數量級。在該研究中,研究人員呈現了時間折疊光學元件在超快相機及其他深度感知成像器件的三種方式。這類相機也被稱為“飛行時間(ToF)”相機,用于測量光脈沖從場景反射出并回到傳感器的時間,以估算3D場景的深度。該論文的共同作者還包括:MIT計算機科學與人工智能實驗室(MIT Computer Science and Artificial Intelligence Laboratory)的研究生Matthew Tancik、媒體實驗室相機文化部門(Camera Culture Group)的博士生Guy Satat、媒體藝術與科學副教授及相機文化部門負責人Ramesh Raskar。

原理解析:將光路換算成時間該研究的光學系統的元件可將飛秒激光脈沖(1飛秒 = 1千萬億分之一秒)投射到場景中并照亮目標物體。傳統攝影光學元件成像原理是:當光穿過曲面玻璃時,會改變光信號的形狀,這種形狀的改變可在傳感器上創建圖像。但該研究中光學元件的原理是:光信號并不會直接進入傳感器,而是先在鏡子間來回反射,用以精確捕捉并反射光線。研究者將其中的每一次反射稱為“往返行程(round trip)”。在每次“往返行程”中,傳感器會以特定的時間間隔捕捉一些光線,例如設定每30納秒抓拍1納秒。

光信號兩鏡子間“往返行程”示意圖本研究的關鍵創新在于:每一次光的“往返行程”都會讓焦點接近透鏡,傳感器依據焦點定位來捕捉圖像。這樣就可大幅縮小透鏡尺寸。比如,條紋相機想要捕捉傳統透鏡的長焦圖像:利用時間折疊光學元件,第一次“往返行程”將焦點定位在與靠近透鏡的鏡子組距離的兩倍,此后每一次“往返行程”都使焦點與透鏡離得越來越近。最后根據往返次數的不同來計算距離,因此傳感器就可以放置在離透鏡很近的地方。將傳感器放置在由總“往返行程”確定的精確焦點上,相機就可捕捉到清晰的圖像以及光信號的不同階段,所有圖像均帶有不同的時間編碼,隨著信號改變形狀來產生圖像。(最初的幾張圖片將是模糊的,但經過幾次“往返行程”試探后,目標對象就會被準確聚焦。)

依據“光往返”次數計算距離,可縮減傳感器與透鏡的距離該論文中,研究人員通過飛秒光脈沖成像刻有“MIT”的掩模(mask)來證明,掩模距離透鏡孔徑53厘米。傳統20厘米焦距透鏡必須在離傳感器約32厘米遠的地方才能捕捉圖像。與之相比,時間折疊光學元件在經過五次“往返行程”后就能將圖像聚焦到焦點上,且與傳感器距離僅3.1厘米。

傳統鏡頭

改進后的鏡頭,長度大大縮短Heshmat認為,這項研究對于設計更緊湊的望遠鏡透鏡捕捉來自太空的超快信號,亦或是設計尺寸更小且重量更輕的透鏡拍攝地球表面,都是非常有用的。多變焦且色彩豐富接下來,研究人員嘗試對“X”和“II”兩種圖案進行成像。兩圖案間隔約為50厘米,且均在相機視線范圍內。“X”圖案距透鏡55厘米,而“II”圖案距透鏡只4厘米。通過精確地重新排列光學元件(如將透鏡置于兩鏡子之間),使每次“往返行程”都在單次圖像采集中放大了光線,就實現了整形光線。這就好像相機在每次往返中都能變焦。

當他們把激光發射進場景時,僅按一次快門,就可得到兩幅獨立且聚焦的圖像(在第一次“往返”中捕捉X的圖像,在第二次“往返”中捕捉II圖像)。然后,研究人員展示了超快多光譜(或多色)相機。他們設計了兩種顏色反射鏡和一種寬帶鏡:一種顏色反射鏡是通過反射顏色,以更接近透鏡;另一種顏色反射鏡則是通過反射第二種顏色,以從透鏡前移開。利用此類相機成像帶有“A”和“B”的掩模發現,第二種顏色照亮A,而第一種顏色照亮了B,時間均為十分之幾皮秒。

這是由于當光線進入相機時,第一種顏色的波長會立即在第一個腔內來回反射,由傳感器記錄其時間。然而,第二種顏色的波長會穿過第一個腔進入第二個腔,這就會使它們到達傳感器時間的略微延遲。由于研究人員了解不同顏色波長抵達傳感器的時間,他們就可將相應的顏色疊加到圖像上(如第一個波長是第一種顏色,第二個是第二種顏色)。Heshmat說,這些對于目前只能記錄紅外光的深度傳感相機來說大有用處。Heshmat認為,該論文的關鍵貢獻在于:它可以通過調整空腔間距或使用不同類型的空腔、傳感器及透鏡,來為多種光學元件設計打開大門。

Heshmat說:“核心信息就是,當你手握快速相機或者深度傳感器時,你就不用像傳統相機那樣需要設計光學元件。你可以通過在恰當時間成像來實現更多的拍攝可能。”光子學實驗室主任、加州大學伯克利分校電子與計算機工程教授Bahram Jalali說:“這項工作開發了時間維度,使得利用脈沖激光照明的超快相機實現了新功能。這為設計成像系統開辟了一條新道路。超快成像技術使得利用如組織等散射介質成像成為可能,這一工作有望改善醫學成像,特別是手術顯微鏡。”

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2564

    文章

    52668

    瀏覽量

    764339
  • 計算機
    +關注

    關注

    19

    文章

    7636

    瀏覽量

    90288
  • 人工智能
    +關注

    關注

    1804

    文章

    48788

    瀏覽量

    247030

原文標題:MIT巧妙開發“時間折疊光學元件”,開啟光學成像新紀元

文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    共聚焦顯微鏡—賦能光學元件精密質控

    光學精密加工領域,微納結構元件的三維形貌檢測是保障器件性能的重要環節。以微透鏡陣列、衍射光學元件為代表的精密光學
    發表于 06-05 10:09 ?0次下載

    泰芯半導體開啟AIOT高效傳輸新紀元

    今天,Wi-Fi/藍牙/星閃音視頻SOC芯片TXW82x及Wi-Fi Halow TXW8301S正式亮相!開啟高效傳輸的新紀元
    的頭像 發表于 05-29 14:30 ?322次閱讀

    PanDao:光學設計中的光學加工鏈建模

    原型到批量生產)。在最近的一個瑞士研究項目中,PanDao開發了第一個用于光學制造鏈調控的軟件解決方案。為此,我們采用了一種最近開發的專門用于光學制造的新型分析和優化工具[1],對加工和處理進行了嚴格
    發表于 05-12 08:53

    PanDao:簡化光學元件制造流程

    效應、諧振頻率等微觀參數,另一方則圍繞MTF(調制傳遞函數)、成像分辨率、通光孔徑、光闌位置等系統指標展開討論。\" 1.通過調制進行優化 \"因此,光學制造各環節急需建立更深
    發表于 05-08 08:46

    PanDao:光學設計中的制造風險管理

    摘要 :本文系統闡述為特定光學元件確定最佳光學制造技術(OFT)組合的策略,并將應用到光學制造鏈的構建中。為此,研究團對光學系統進行了分類,
    發表于 05-07 09:01

    PanDao:光學加工評估

    ,不是確定性的,并且在很大程度上依賴于人的經驗和談判。 PanDao是一款能夠滿足光學設計和光學制造的仿真軟件,它能夠實現在設計階段,整個光學元件的預覽,并且考慮了與鏡頭有關的參數和成
    發表于 05-06 08:43

    智能光學計算成像技術與應用

    智能光學計算成像是一個將人工智能(AI)與光學成像技術相結合的前沿領域,它通過深度學習、光學神經網絡、超表面光學(metaphotonics
    的頭像 發表于 03-07 17:18 ?488次閱讀
    智能<b class='flag-5'>光學</b>計算<b class='flag-5'>成像</b>技術與應用

    中國信通院栗蔚:云計算與AI加速融合,如何開啟智算時代新紀元

    中國信通院栗蔚:云計算與AI加速融合,如何開啟智算時代新紀元
    的頭像 發表于 01-17 18:48 ?916次閱讀
    中國信通院栗蔚:云計算與AI加速融合,如何<b class='flag-5'>開啟</b>智算時代<b class='flag-5'>新紀元</b>?

    光學中簡單但重要的光學路徑與成像系統介紹

    ? 本文簡單介紹了光學一些簡單但重要的光學路徑與成像系統。 ? 光在物質中傳播得更慢:折射率n=c/v ? ? ? 透鏡通過折射原理工作: ? ? 傳播方向與波前垂直: ? ? 單透鏡成像
    的頭像 發表于 12-30 13:55 ?654次閱讀
    <b class='flag-5'>光學</b>中簡單但重要的<b class='flag-5'>光學</b>路徑與<b class='flag-5'>成像</b>系統介紹

    新型超分辨顯微成像技術:突破光學衍射極限

    和運動偽影兩大技術難題,可在清醒動物腦中對神經元的快速動態進行超分辨率光學成像和解析,為探討動物學習過程中的神經元突觸可塑性基礎提供了新工具。近年來,新發展
    的頭像 發表于 12-19 06:21 ?507次閱讀
    <b class='flag-5'>新型</b>超分辨顯微<b class='flag-5'>成像</b>技術:突破<b class='flag-5'>光學</b>衍射極限

    光學成像新進展:使用部分相干光進行單向成像

    具有部分相干照明的單向衍射成像儀概念圖 來自加州大學洛杉磯分校(UCLA)的一個研究小組公布了光學成像技術的一項新進展,該技術可顯著增強視覺信息處理和通信系統。這項研究成果發表在《先進光子學
    的頭像 發表于 11-26 06:20 ?402次閱讀
    <b class='flag-5'>光學成像</b>新進展:使用部分相干光進行單向<b class='flag-5'>成像</b>

    光學成像的關鍵技術和工藝

    實現。 光譜成像 光譜成像技術可捕捉材料的光譜信息進行化學分析。 例如,拉曼光譜利用激光與分子振動的相互作用來揭示化學特性。它對于識別化合物和分析材料,包括監測手術環境中的麻醉氣體混合物至關重要。 醫學成像技術
    的頭像 發表于 11-01 06:25 ?501次閱讀
    <b class='flag-5'>光學成像</b>的關鍵技術和工藝

    高精度3D Hall搖桿專用芯片,開啟操控新紀元

    在飛控領域中的3D霍爾搖桿,開啟操控新紀元
    的頭像 發表于 10-30 09:29 ?760次閱讀
    高精度3D Hall搖桿專用芯片,<b class='flag-5'>開啟</b>操控<b class='flag-5'>新紀元</b>

    什么是散射成像技術?

    近年來,計算機技術的飛速發展、介觀物理研究的深入、計算成像思想的完善和圖像處理技術的發展,促進了以物理機制為基礎的計算光學成像技術的發展。計算光學成像技術作為新型
    的頭像 發表于 08-23 06:25 ?536次閱讀
    什么是散射<b class='flag-5'>成像</b>技術?

    一種新型光學復合場成像

    加州大學洛杉磯分校(UCLA)的研究人員在光學成像技術領域取得了一個重要的里程碑。他們開發出了一種新型光學復合場成像儀,無需數字處理就能捕捉光場的振幅和相位信息。 這項創新有望給生物
    的頭像 發表于 08-06 06:24 ?440次閱讀
    一種<b class='flag-5'>新型</b>全<b class='flag-5'>光學</b>復合場<b class='flag-5'>成像</b>儀
    主站蜘蛛池模板: free性欧美69高清 | 欧美日韩视频综合一区无弹窗 | 特级一级毛片 | 美女黄页网| 国产综合视频在线 | 国产午夜大片 | 69日本xxxxxxxx59| 欧美zoozzooz在线观看 | 91寡妇天天综合久久影院 | 色手机在线| 天天操夜夜欢 | 欧美综合精品一区二区三区 | 精品国产三级在线观看 | 色女人天堂 | 男人和女人做爽爽视频在线观看 | 456亚洲人成影院在线观 | 啪啪中文字幕 | 日本高清不卡视频 | 酒色影院 | 成人精品亚洲 | 在线成人免费观看国产精品 | 午夜久久久精品 | 久久久免费网站 | 狂捣猛撞侍卫攻双性王爷受 | 最新黄色大片 | 91大神在线精品网址 | 免费人成在线观看网站 | 国产精品臀控福利在线观看 | 日夜操在线视频 | 久久免费国产视频 | 色戒真做gif动图 | 欧美爱爱帝国综合社区 | 七月色婷婷 | 日a在线 | 欧美线人一区二区三区 | 久久伊人成人网 | 亚洲影视网 | 免费一级欧美片在线观看 | 欧美日韩看片 | 日韩一区二区视频在线观看 | 777奇米影音 |