傳統(tǒng)的光電轉(zhuǎn)換技術(shù)一般采用LED等發(fā)光器件。這種發(fā)光器件多采用邊緣發(fā)射,體積大,因此比較難以和半導(dǎo)體技術(shù)結(jié)合。20世紀(jì)90年代垂直腔表面發(fā)射激光VCSEL技術(shù)成熟后,解決了發(fā)光器件和半導(dǎo)體技術(shù)結(jié)合的問題,因此迅速得到普及。
晶圓光學(xué)鏡片中間的兩面發(fā)射垂直腔面發(fā)射體激光器(VCSEL)
近年來,智能手機(jī)領(lǐng)域相關(guān)技術(shù)更新迭代十分迅速,由于人們的日常需求逐漸提高,手機(jī)的拍照,感應(yīng),識別等功能尤其受到關(guān)注,故手機(jī)攝像頭用量提升的趨勢仍處于加速態(tài)勢,特別是3D攝像頭等新創(chuàng)新的使用也將為手機(jī)攝像頭領(lǐng)域提供增益,尤其以VCSEL激光器為核心關(guān)鍵元器件的3D Sensing攝像頭在手機(jī)上的應(yīng)用,帶動相關(guān)市場迎來一輪爆發(fā)。
3D Sensing攝像頭
3D Sensing攝像頭相比于傳統(tǒng)攝像頭除了能夠獲取平面圖像以外,還可以獲得拍攝對象的深度信息,即三維的位置及尺寸信息,其通常由多個攝像頭+深度傳感器組成。3D 攝像頭實現(xiàn)實時三維信息采集,為消費(fèi)電子終端加上了物體感知功能,從而引入多個“痛點型應(yīng)用場景”,包括人機(jī)交互、人臉識別、三維建模、安防和輔助駕駛等多個領(lǐng)域,3D Sensing攝像頭讓交互方式從平面變成了立體。而3D Sensing攝像頭產(chǎn)業(yè)鏈與傳統(tǒng)攝像頭產(chǎn)業(yè)鏈相比主要新增加紅外光源+光學(xué)組件+紅外傳感器等部分,其中最關(guān)鍵的部分就是紅外光源。
因特爾公司研發(fā)的RealSense 3D攝像頭架構(gòu)
目前,可以提供800-1000nm波段的近紅外光源主要有三種:紅外LED、紅外LD-EEL(邊發(fā)射激光二極管)和VCSEL(垂直腔面發(fā)射激光器)。早期3D傳感系統(tǒng)一般都使用LED作為紅外光源,但是隨著VCSEL技術(shù)的成熟,性價比已經(jīng)接近紅外LED,除此之外,在技術(shù)方面,由于LED不具有諧振腔,導(dǎo)致光束更加發(fā)散,在耦合性方面很差,而VCSEL在精確度、小型化、低功耗、可靠性全方面占優(yōu)的情況下,現(xiàn)在常見的3D攝像頭系統(tǒng)一般都采用VCSEL作為紅外光源。而與傳統(tǒng)邊發(fā)射激光器相比,VCSEL 在光束質(zhì)量、與光纖耦合效率、腔面反射率上都具有較大優(yōu)勢,且因為VCSEL發(fā)射光線垂直于襯底而邊發(fā)射激光器發(fā)射光線平行于襯底,因此 VCSEL 能夠?qū)崿F(xiàn)二維陣列而邊發(fā)射激光器不行。
VCSEL技術(shù)
垂直腔面發(fā)射激光器(Vertical-Cavity Surface-Emitting Laser,簡稱VCSEL,又譯垂直共振腔面射型雷射)是一種半導(dǎo)體,其激光垂直于頂面射出,與一般用切開的獨(dú)立芯片制成,激光由邊緣射出的邊射型激光有所不同。
VCSEL是很有發(fā)展前景的新型光電器件,也是光通信中革命性的光發(fā)射器件。顧名思義,邊發(fā)射激光器是沿平行于襯底表面、垂直于解理面的方向出射,而面發(fā)射激光器其出光方向垂直于襯底表面,如下圖:
邊發(fā)射激光器(a)與面發(fā)射激光器(b)示意圖
它優(yōu)于邊發(fā)射激光器的表現(xiàn)在于:易于實現(xiàn)二維平面和光電集成;圓形光束易于實現(xiàn)與光纖的有效耦合;可以實現(xiàn)高速調(diào)制,能夠應(yīng)用于長距離、高速率的光纖通信系統(tǒng);有源區(qū)尺寸極小,可實現(xiàn)高封裝密度和低閾值電流;芯片生長后無須解理,封裝后即可進(jìn)行在片實驗;在很寬的溫度和電流范圍內(nèi)都以單縱模工作;價格低。
VCSEL的優(yōu)異性能已引起廣泛關(guān)注,成為國際上研究的熱點。這十多年來,VCSEL在結(jié)構(gòu)、材料、波長和應(yīng)用領(lǐng)域都得到飛速發(fā)展,部分產(chǎn)品已進(jìn)入市場。
VCSEL基本結(jié)構(gòu)
VCSEL的結(jié)構(gòu)示意圖如下圖所示。它是在由高、低折射率介質(zhì)材料交替生長成的分布布喇格反射器(DBR)之間連續(xù)生長單個或多個量子阱有源區(qū)所構(gòu)成。典型的量子阱數(shù)目為3~5個,它們被置于駐波場的最大處附近,以便獲得最大的受激輻射效率而進(jìn)入振蕩場。在底部還鍍有金屬層以加強(qiáng)下面DBR的光反饋作用,激光束從頂部透明窗口輸出。
實際上,要完成低閾值電流工作,和一般的條型半導(dǎo)體激光器一樣,必須使用很強(qiáng)的電流收斂結(jié)構(gòu),同時進(jìn)行光約束和截流子約束。由上圖可見,VCSEL的半導(dǎo)體多層模反射鏡DBR是由GaAs/AlAs構(gòu)成的,經(jīng)蝕刻使之成為air-post(臺面)結(jié)構(gòu)。在高溫水蒸汽中將AlAs層氧化,變?yōu)橛薪^緣性的AlxOy層,其折射率也大大降低,因而成為把光、載流子限制在垂直方向的結(jié)構(gòu)。對VCSEL的設(shè)計集中在高反射率、低損耗的DBR和有源區(qū)在腔內(nèi)的位置。
VCSEL激光器的特點
由于VCSEL與邊發(fā)射激光器有著不同的結(jié)構(gòu),這就決定了兩者之間有不同的特點和性能,下表中列出了兩種激光器的基本參數(shù)。
從表中我們可以看出,VCSEL有源區(qū)的體積小、腔短,這就決定了它容易實現(xiàn)單縱模、低閾值(亞毫安級)電流工作,但是為了得到足夠高的增益,其腔鏡的反射率必須達(dá)到99%。VCSEL具有較高的弛豫振蕩頻率,從而在高速數(shù)據(jù)傳輸以及光通信中,預(yù)計將有著廣泛的應(yīng)用。VCSEL出光方向與襯底表面垂直,可以實現(xiàn)很好的橫向光場限制,進(jìn)行整片測試,得到圓形光束,易與制作二維陣列,外延晶片可以在整個工藝完成前,節(jié)約了生產(chǎn)成本。
VCSEL的優(yōu)點主要有:
l.出射光束為圓形,發(fā)散角小,很容易與光纖及其他光學(xué)元件耦合且效率高。
2.可以實現(xiàn)高速調(diào)制,能夠應(yīng)用于長距離、高速率的光纖通信系統(tǒng)。
3.有源區(qū)體積小,容易實現(xiàn)單縱模、低閾值的工作。
4.電光轉(zhuǎn)換效率可大于50%,可期待得到較長的器件壽命。 5.容易實現(xiàn)二維陣列,應(yīng)用于平行光學(xué)邏輯處理系統(tǒng),實現(xiàn)高速、大容量數(shù)據(jù)處理,并可應(yīng)用于高功率器件。
6.器件在封裝前就可以對芯片進(jìn)行檢測,進(jìn)行產(chǎn)品篩選,極大降低了產(chǎn)品的成本。
7.可以應(yīng)用到層疊式光集成電路上,可采用微機(jī)械等技術(shù)。
VCSEL的發(fā)展史
VCSEL的歷史,也是在諸多學(xué)者機(jī)構(gòu)的努力下,其性能不斷優(yōu)化的歷史,在這幾十年的歷史中,IGA及其帶領(lǐng)的團(tuán)隊起到了不可磨滅的作用,可以堪稱IGA教授為VCSEL之父。
隨著VCSEL的諸多優(yōu)點,其應(yīng)用也越來越廣泛。并且為了適合這些應(yīng)用,VCSEL也朝著多個方向在各自發(fā)展,如圖所示,為其主要應(yīng)用:
不同波長VCSEL應(yīng)用領(lǐng)域
由于目前VCSEL最主要應(yīng)用在光傳輸方面,基于1979年Soda等人的VCSEL為開端,VCSEL的發(fā)展,主要經(jīng)歷了2個階段:
第一階段:從VCSEL誕生到20世紀(jì)末,蠻荒發(fā)展階段。
在這個階段,各個組織機(jī)構(gòu)都提出以及嘗試了各種不同結(jié)構(gòu)類型的VCSEL,最終氧化物限制型VCSEL由于其諸多優(yōu)點而勝出。
1994年,Huffaker等人率先采用在臺面結(jié)構(gòu)(Mesa)下本征氧化AlGaAs,生成掩埋高阻層Al氧化物的方式,來對電流進(jìn)行進(jìn)一步的限制。利用這種結(jié)構(gòu),閾值電流可以降低到225uA。而這種結(jié)構(gòu)就是目前普遍采用的氧化物限制型(Oxide-confined)結(jié)構(gòu)的原型;
首個氧化物限制型VCSEL
2013年,Iga對VCSEL的關(guān)鍵指標(biāo)如閾值電流、調(diào)制帶寬與有源區(qū)的關(guān)系給出了簡單的關(guān)系公式。
VCSEL的閾值電流同其他半導(dǎo)體激光器一樣,與有源區(qū)體積有如下關(guān)系式:
由公式可以看出,為了降低閾值電流,就需要不斷減小有源區(qū)體積。比較當(dāng)前的VCSEL與條狀激光器的有源區(qū)體積,可以發(fā)現(xiàn),VCSEL的V=0.06um3, 條狀激光器依然在V=60um3, 這就是為什么條狀激光器的閾值電流典型值仍舊在幾十mA的級別,而VCSEL的閾值電流已經(jīng)達(dá)到了亞毫安級別。
第二階段:逐漸發(fā)展成熟階段及優(yōu)化階段。
由于氧化物限制型的VCSEL具有低閾值電流等很多優(yōu)點,這種結(jié)構(gòu)的VCSEL被很快運(yùn)用到了光通信中。
由于高的工作電流可以帶來更好的調(diào)制特性,但同時也會相應(yīng)的增加功耗,進(jìn)而帶來溫度的上升,會對可靠性帶來影響。調(diào)制速率與功耗成了VCSEL在光傳輸領(lǐng)域中重要的挑戰(zhàn)。2007年,Y-C.Chang等人采取增加深氧化層層數(shù)到5層以及增加p型摻雜濃度來降低串聯(lián)阻抗的方式,在0.9mA電流下實現(xiàn)的15GHz調(diào)制帶寬,相應(yīng)的功耗只有1.2mW,帶寬/功耗比只有12.5GHz/mW,是當(dāng)時最先進(jìn)水平。VCSEL截面結(jié)構(gòu)如圖所示:
深氧化層氧化物限制型VCSEL
利用相同的VCSEL結(jié)構(gòu),同年,Y-C.Chang等人又實現(xiàn)了35Gbps的無誤碼傳輸。
2011年,Petter Westbergh等人研究了850nm氧化物限制型VCSEL光子壽命與諧振頻率及調(diào)制速率的關(guān)系,并指出在高諧振頻率以及低阻尼震蕩中取得一個折衷來提高速率:當(dāng)光子壽命接近3ps時,可以使VCSEL的調(diào)制帶寬達(dá)到23GHz,同時可以得到40Gb/s的無誤碼傳輸。
近年來,各個興趣小組對于高速率、低功耗的VCSEL研究依然興趣不減,圖10是截止到2015年,各機(jī)構(gòu)的研究成果。可以看出,如果采用預(yù)加重的方式,目前VCSEL背靠背傳輸可以達(dá)到71Gbit/s。
-
led
+關(guān)注
關(guān)注
242文章
23742瀏覽量
671403 -
VCSEL
+關(guān)注
關(guān)注
17文章
279瀏覽量
30727
原文標(biāo)題:用于3D攝像頭的VCSEL技術(shù)
文章出處:【微信號:bdtdsj,微信公眾號:中科院半導(dǎo)體所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
華為加持,激光雷達(dá)爆發(fā)式增長帶旺VCSEL市場!兩大廠商揭秘新品方案

EastWave應(yīng)用:垂直腔表面激光器
JCMSuite應(yīng)用—垂直腔面發(fā)射激光器(VCSEL)
VirtualLab Fusion應(yīng)用:垂直腔面發(fā)射激光器 (VCSEL) 二極管陣列的建模
垂直腔面發(fā)射激光器(VCSEL)的應(yīng)用

半導(dǎo)體激光器EEL & VCSEL應(yīng)用領(lǐng)域

激光3D打印設(shè)備的技術(shù)優(yōu)勢

電子科普!什么是激光二極管(半導(dǎo)體激光器)
半導(dǎo)體激光器的應(yīng)用領(lǐng)域

使用myAGV、Jetson Nano主板和3D攝像頭,實現(xiàn)了RTAB-Map的三維建圖功能!

評論