資料介紹
1 Introduction Many problems in early vision involve assigning each pixel a label, where the labels represent some local quantity such as disparity. Such pixel labeling problems are naturally represented in terms of energy minimization, where the energy function has two terms: one term penalizes solutions that are inconsistent with the observed data, while the other term enforces some kind of spatial coherence. One of the reasons this framework is so popular is that it can be justified in terms of maximum a posteriori estimation of a Markov Random Field, as described in [1, 2]。 Despite the elegance and power of the energy minimization approach, its early adoption was slowed by computational considerations. The algorithms that were originally used, such as ICM [1] or simulated annealing [3, 4], proved to be extremely inefficient. In the last few years, energy minimization approaches have had a renaissance, primarily due to powerful new optimization algorithms such as graph cuts [5, 6] and Loopy Belief Propagation (LBP) [7, 8]。 The results, especially in stereo, have been dramatic; according to the widely-used Middlebury stereo benchmarks [9], almost all the top-performing stereo methods rely on graph cuts or LBP. Moreover, these methods give substantially more accurate results than were previously possible. Simultaneously, the range of applications of pixel labeling problems has also expanded dramatically, moving from early applications such as image restoration [1], texture modeling [10], image labeling [11], and stereo matching [4, 5], to applications such as interactive photo segmentation [12–14] and the automatic placement of seams in digital photomontages [15]。 Relatively little attention has been paid, however, to the relative performance of various optimization algorithms. Among the few exceptions is [16], which compared graph cuts and LBP, and [17], which compared several different max flow algorithms for graph cuts. While it is generally accepted that algorithms such as graph cuts are a huge improvement over older techniques such as simulated annealing, less is known about the efficiency vs. accuracy tradeoff amongst more recently developed algorithms. In this paper, we evaluate a number of different energy minimization algorithms for pixel labeling problems. We propose a number of benchmark problems for energy minimization and use these benchmarks to compare several different energy minimization methods. Since much of the work in energy minimization has been motivated by pixel labeling problems over 2D grids, we have restricted our attention to problems with this simple topology. (The extension of our work to more general topologies, such as 3D, is straightforward.) This paper is organized as follows. In section 2 we give a precise description of the energy functions that we consider, and present a simple but general software interface to describe such energy functions and to call an arbitrary energy minimization algorithm. In section 3 we describe the different energy minimization algorithms that we have implemented, and in section 4 we present our set of benchmarks. In section 5 we provide our experimental comparison of the different energy minimization methods. Finally, in section 6 we discuss the conclusions that can be drawn from our study.
- 基于隱馬爾科夫模型的公交乘客出行鏈識別 4次下載
- 融合灰色模型和馬爾科夫模型的農(nóng)產(chǎn)品產(chǎn)量預(yù)測 7次下載
- 基于隱馬爾科夫模型的惡意域名檢測方法 6次下載
- 改進(jìn)隱馬爾科夫模型的網(wǎng)絡(luò)態(tài)勢評估方法 5次下載
- 基于馬爾科夫鏈的隨機(jī)測量矩陣研究分析 7次下載
- 高精度近線性的馬爾可夫隨機(jī)場新模型iMRF 2次下載
- 一種融合馬爾科夫決策過程與信息熵的對話算法 6次下載
- 基于隱馬爾科夫模型和卷積神經(jīng)網(wǎng)絡(luò)的圖像標(biāo)注方法 4次下載
- 隨機(jī)過程的風(fēng)速預(yù)測模型 8次下載
- 基于馬爾可夫隨機(jī)場模型的運(yùn)動對象分割算法_王閃 0次下載
- 網(wǎng)絡(luò)系統(tǒng)的馬爾科夫時滯預(yù)測控制_黃玲 18次下載
- 基于非均勻馬爾可夫隨機(jī)場的圖像分割方法 0次下載
- 基于核密度估計和馬爾科夫隨機(jī)場的運(yùn)動目標(biāo)檢測 44次下載
- 基于簡化馬爾可夫隨機(jī)場的紅外圖像快速分割方法 25次下載
- 基于馬爾科夫鏈的網(wǎng)絡(luò)控制系統(tǒng)調(diào)度
- SystemVerilog的隨機(jī)約束方法 1821次閱讀
- FPGA的偽隨機(jī)數(shù)發(fā)生器學(xué)習(xí)介紹 1642次閱讀
- 什么是馬爾可夫建模,它的用途是什么? 1581次閱讀
- 命名實體識別實踐 - CRF 1413次閱讀
- 強(qiáng)化學(xué)習(xí)應(yīng)用中對話系統(tǒng)的用戶模擬器 2048次閱讀
- 隱馬爾可夫模型描述一個含有隱含未知參數(shù)的馬爾可夫過程 4574次閱讀
- 基于模型的學(xué)習(xí)vs無模型學(xué)習(xí) 7179次閱讀
- 一文看懂AI制藥的作用 1.1w次閱讀
- 基于馬爾科夫的隨機(jī)場的圖像分割是一種基于統(tǒng)計的圖像分割算法 1.6w次閱讀
- 語音識別技術(shù)必定會滲透在人們生活的每個角落 8072次閱讀
- 隱馬爾科夫模型詳解分析 2099次閱讀
- 如何用隱馬爾可夫模型實現(xiàn)中文拼音輸入 8195次閱讀
- 哈夫曼算法的理解及原理分析,算法實現(xiàn),構(gòu)造哈夫曼樹的算法 3.4w次閱讀
- java實現(xiàn)的哈夫曼編碼與解碼 5782次閱讀
- 一種普適機(jī)器人系統(tǒng)同時定位、標(biāo)定與建圖方法 3028次閱讀
下載排行
本周
- 1DC電源插座圖紙
- 0.67 MB | 2次下載 | 免費(fèi)
- 2AN158 GD32VW553 Wi-Fi開發(fā)指南
- 1.51MB | 2次下載 | 免費(fèi)
- 3AN148 GD32VW553射頻硬件開發(fā)指南
- 2.07MB | 1次下載 | 免費(fèi)
- 4AN111-LTC3219用戶指南
- 84.32KB | 次下載 | 免費(fèi)
- 5AN153-用于電源系統(tǒng)管理的Linduino
- 1.38MB | 次下載 | 免費(fèi)
- 6AN-283: Σ-Δ型ADC和DAC[中文版]
- 677.86KB | 次下載 | 免費(fèi)
- 7SM2018E 支持可控硅調(diào)光線性恒流控制芯片
- 402.24 KB | 次下載 | 免費(fèi)
- 8AN-1308: 電流檢測放大器共模階躍響應(yīng)
- 545.42KB | 次下載 | 免費(fèi)
本月
- 1ADI高性能電源管理解決方案
- 2.43 MB | 450次下載 | 免費(fèi)
- 2免費(fèi)開源CC3D飛控資料(電路圖&PCB源文件、BOM、
- 5.67 MB | 138次下載 | 1 積分
- 3基于STM32單片機(jī)智能手環(huán)心率計步器體溫顯示設(shè)計
- 0.10 MB | 130次下載 | 免費(fèi)
- 4使用單片機(jī)實現(xiàn)七人表決器的程序和仿真資料免費(fèi)下載
- 2.96 MB | 44次下載 | 免費(fèi)
- 53314A函數(shù)發(fā)生器維修手冊
- 16.30 MB | 31次下載 | 免費(fèi)
- 6美的電磁爐維修手冊大全
- 1.56 MB | 24次下載 | 5 積分
- 7如何正確測試電源的紋波
- 0.36 MB | 17次下載 | 免費(fèi)
- 8感應(yīng)筆電路圖
- 0.06 MB | 10次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935121次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設(shè)計
- 1.48MB | 420062次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233088次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191367次下載 | 10 積分
- 5十天學(xué)會AVR單片機(jī)與C語言視頻教程 下載
- 158M | 183335次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81581次下載 | 10 積分
- 7Keil工具M(jìn)DK-Arm免費(fèi)下載
- 0.02 MB | 73810次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65988次下載 | 10 積分
評論
查看更多