在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
電子發燒友網>電子資料下載>類型>參考設計>ADP5589-用于瑞薩微控制器平臺的無操作系統驅動程序

ADP5589-用于瑞薩微控制器平臺的無操作系統驅動程序

2021-04-21 | pdf | 1.77MB | 次下載 | 2積分

資料介紹

This version (24 Jan 2021 17:36) was approved by Dragos Bogdan.The Previously approved version (22 Jul 2019 14:19) is available.Diff

ADP5589 - No-OS Driver for Renesas Microcontroller Platforms

Supported Devices

Evaluation Boards

Overview

The ADP5589 is a 19 channel GPIO (General Purpose Input/Output) port expander with built-in keypad matrix decoder, programmable logic, reset logic, and PWM generator. The IC is capable of handling QWERTY size keyboards and GPIO expansion. I/O expander ICs are used in portable devices (phones, remote controls, & cameras) and non-portable applications (healthcare, industrial & instrumentation). I/O expanders can be used to increase the number of I/Os available to a processor or to reduce the number of I/Os required through interface connectors for front panel designs.

The ADP5589 handles all key scanning and decoding and can flag the main processor via an interrupt line that new key events have occurred. GPI changes and logic changes can also be tracked as events via the FIFO, eliminating the need to monitor different registers for event changes. The ADP5589 is equipped with a FIFO to store up to 16 events. Events can be read back by the processor via an I2C-compatible interface.

The ADP5589 frees up the main processor from having to monitor the keypad, thereby reducing power consumption and/or increasing processor bandwidth for performing other functions. The programmable logic functions allow common logic requirements to be integrated as part of the GPIO expander, saving board area and cost. Reference software Linux driver is available.

28 Sep 2012 16:25 · Dragos Bogdan

The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for different microcontroller platforms.

Driver Description

The driver contains two parts:

  • The driver for the ADP5589 part, which may be used, without modifications, with any microcontroller.
  • The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.

The Communication Driver has a standard interface, so the ADP5589 driver can be used exactly as it is provided.

There are three functions which are called by the ADP5589 driver:

  • I2C_Init() – initializes the communication peripheral.
  • I2C_Write() – writes data to the device.
  • I2C_Read() – reads data from the device.

I2C driver architecture

The implementation of these three functions depends on the used microcontroller.

The following functions are implemented in this version of ADP5589 driver:

Function Description
void ADP5589_SetRegisterValue(unsigned char registerAddress, unsigned char registerValue) Writes data into a register.
unsigned char ADP5589_GetRegisterValue(unsigned char registerAddress) Reads the value of a register.
char ADP5589_Init(void) Initializes the communication peripheral and checks if the ADP5589 part is present.
void ADP5589_InitPwm(void) Initializes the PWM generator in continuous mode.
void ADP5589_SetPwm(unsigned short pwmOffTime, unsigned short pwmOnTime) Sets the PWM On and Off times.
void ADP5589_GpioDirection(unsigned char reg, unsigned char val) Sets the direction of the pins.
unsigned char ADP5589_GetPinState(unsigned char reg) Reads the state of the pins.
void ADP5589_SetPinState(unsigned char reg, unsigned char state) Sets the state of the pins.
void ADP5589_InitKey(unsigned char pmodPort) Initializes keyboard decoder.
unsigned char ADP5589_KeyDecode(unsigned char reg, unsigned char eventType, unsigned char pmodPort) Decodes the key pressed on the Pmod-KYPD.
void ADP5589_KeyLock(unsigned char firstEvent, unsigned char secondEvent, unsigned char pmodPort) Locks the ADP5589 and requests Password for unlock.
01 Oct 2012 15:17 · Dragos Bogdan

Downloads

Renesas RL78G13 Quick Start Guide

This section contains a description of the steps required to run the ADP5589 demonstration project on a Renesas RL78G13 platform.

Required Hardware

Required Software

Hardware Setup

A PmodIOXP has to be interfaced with the Renesas Demonstration Kit (RDK) for RL78G13:

  PmodIOXP J3 connector 1 (SCL) → YRDKRL78G13 J9  connector Pin 1
  PmodIOXP J3 connector 3 (SDA) → YRDKRL78G13 J9  connector Pin 3
  PmodIOXP J3 connector 5 (GND) → YRDKRL78G13 J11 connector Pin 5
  PmodIOXP J3 connector 7 (VCC) → YRDKRL78G13 J11 connector Pin 6

Reference Project Overview

The reference project:

  • waits for a password to unlock the keypad;

  • after the keypad is unlocked, it will display on the LCD the last pressed key and the status of R0 pin; also the PWM generator is enabled on pin R3.

Software Project Tutorial

This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RL78G13 for controlling and monitoring the operation of the ADI part.

  • Run the IAR Embedded Workbench for Renesas RL78 integrated development environment.
  • Choose to create a new project (Project – Create New Project).
  • Select the RL78 tool chain, the Empty project template and click OK.

  • Select a location and a name for the project (ADIEvalBoard for example) and click Save.

  • Open the project’s options window (Project – Options).
  • From the Target tab of the General Options category select the RL78 – R5F100LE device.

  • From the Setup tab of the Debugger category select the TK driver and click OK.

  • Extract the files from the lab .zip archive and copy them into the project’s folder.

  • The new source files have to be included into the project. Open the Add Files… window (Project – Add Files…), select all the copied files and click open.

  • At this moment, all the files are included into the project.
  • The project is ready to be compiled and downloaded on the board. Press the F7 key to compile it. Press CTRL + D to download and debug the project.
  • A window will appear asking to configure the emulator. Keep the default settings and press OK.

  • To run the project press F5.

03 Sep 2012 13:02 · Dragos Bogdan

Renesas RL78G14 Quick Start Guide

This section contains a description of the steps required to run the ADP5589 demonstration project on a Renesas RL78G14 platform using the PmodIOXP.

Required Hardware

Required Software

The ADP5589 demonstration project for the Renesas RL78G14 platform consists of three parts: the ADP5589 Driver, the PmodIOXP Demo for RL78G14 and the RL78G14 Common Drivers.

All three parts have to be downloaded.

Hardware Setup

A PmodIOXP has to be interfaced with the Renesas Demonstration Kit (RDK) for RL78G14:

  PmodIOXP J3 connector 1 (SCL) → RDKRL78G14 J8  connector Pin 1
  PmodIOXP J3 connector 3 (SDA) → RDKRL78G14 J8  connector Pin 3
  PmodIOXP J3 connector 5 (GND) → RDKRL78G14 J11 connector Pin 5
  PmodIOXP J3 connector 7 (VCC) → RDKRL78G14 J11 connector Pin 6

Reference Project Overview

The reference project:

  • waits for a password to unlock the keypad;

  • after the keypad is unlocked, it will display on the LCD the last pressed and released key(which can be different keys) and the status of R0 pin; also the PWM generator is enabled on pin R3.

Software Project Tutorial

This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RL78G14 for controlling and monitoring the operation of the ADI part.

  • Run the IAR Embedded Workbench for Renesas RL78 integrated development environment.
  • Choose to create a new project (Project – Create New Project).
  • Select the RL78 tool chain, the Empty project template and click OK.

  • Select a location and a name for the project (ADIEvalBoard for example) and click Save.

  • Open the project’s options window (Project – Options).
  • From the Target tab of the General Options category select the RL78 – R5F104PJ device.

  • From the Setup tab of the Debugger category select the TK driver and click OK.

  • Copy the downloaded files into the project's folder.

  • The new source files have to be included into the project. Open the Add Files… window (Project – Add Files…), select all the copied files and click open.

  • At this moment, all the files are included into the project.
  • The project is ready to be compiled and downloaded on the board. Press the F7 key to compile it. Press CTRL + D to download and debug the project.
  • A window will appear asking to configure the emulator. Keep the default settings and press OK.

  • To run the project press F5.

09 May 2013 17:10 · Dragos Bogdan

Renesas RX62N Quick Start Guide

This section contains a description of the steps required to run the ADP5589 demonstration project on a Renesas RX62N platform.

Required Hardware

Required Software

Hardware Setup

A PmodIOXP has to be interfaced with the Renesas Demonstration Kit (RDK) for RX62N:

  PmodIOXP J3 connector 1 (SCL) → YRDKRX62N J2  connector Pin 1
  PmodIOXP J3 connector 3 (SDA) → YRDKRX62N J2  connector Pin 3
  PmodIOXP J3 connector 5 (GND) → YRDKRX62N J8  connector Pin 4
  PmodIOXP J3 connector 7 (VCC) → YRDKRX62N J8  connector Pin 3

Reference Project Overview

The reference project waits for a password to unlock the keypad.

After the keypad is unlocked the state of the pin R0 and the key presses are displayed on the LCD. Also the PWM generator is enabled on pin R3.

Software Project Setup

This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RX62N for controlling and monitoring the operation of the ADI part.

  • Run the High-performance Embedded Workshop integrated development environment.
  • A window will appear asking to create or open project workspace. Choose “Create a new project workspace” option and press OK.
  • From “Project Types” option select “Application”, name the Workspace and the Project “ADIEvalBoard”, select the “RXCPU family and “Renesas RX Standard” tool chain. Press OK.

  • A few windows will appear asking to configure the project:
    • In the “Select Target CPU” window, select “RX600” CPU series, “RX62N” CPU Type and press Next.
    • In the “Option Setting” windows keep default settings and press Next.
    • In the “Setting the Content of Files to be generated” window select “None” for the “Generate main() Function” option and press Next.
    • In the “Setting the Standard Library” window press “Disable all” and then Next.
    • In the “Setting the Stack Area” window check the “Use User Stack” option and press Next.
    • In the “Setting the Vector” window keep default settings and press Next.
    • In the “Setting the Target System for Debugging” window choose “RX600 Segger J-Link” target and press Next.
    • In the “Setting the Debugger Options” and “Changing the Files Name to be created” windows keep default settings, press Next and Finish.
  • The workspace is created.

  • The RPDL (Renesas Peripheral Driver Library) has to integrated in the project. Unzip the RPDL files (double-click on the file “RPDL_RX62N.exe”). Navigate to where the RPDL files were unpacked and double-click on the “Copy_RPDL_RX62N.bat” to start the copy process. Choose the LQFP package, type the full path where the project was created and after the files were copied, press any key to close the window.
  • The new source files have to be included in the project. Use the key sequence Alt, P, A to open the “Add files to project ‘ADIEvalBoard’” window. Double click on the RPDL folder. From the “Files of type” drop-down list, select “C source file (*.C)”. Select all of the files and press Add.

  • To avoid conflicts with standard project files remove the files “intprg.c” and “vecttbl.c” which are included in the project. Use the key sequence Alt, P, R to open the “Remove Project Files” window. Select the files, click on Remove and press OK.

  • Next the new directory has to be included in the project. Use the key sequence Alt, B, R to open the “RX Standard Toolchain” window. Select the C/C++ tab, select “Show entries for: Include file directories” and press Add. Select “Relative to: Project directory”, type “RPDL” as sub-directory and press OK.

  • The library file path has to be added in the project. Select the Link/Library tab, select “Show entries for: Library files” and press Add. Select “Relative to: Project directory”, type “RPDL/RX62N_library” as file path and press OK.

  • Because the “intprg.c” file was removed the “PIntPrg” specified in option “start” has to be removed. Change “Category” to “Section”. Press “Edit”, select “PIntPRG” and press “Remove”. From this window the address of each section can be also modified. After all the changes are made press OK two times.

  • At this point the files extracted from the zip file located in the “Software Tools” section have to be added into the project. Copy all the files from the archive into the project folder.

  • Now, the files have to be included in the project. Use the key sequence Alt, P, A to open the “Add files to project ‘ADIEvalBoard’” window. Navigate into ADI folder. From the “Files of type” drop-down list, select “Project Files”. Select all the copied files and press Add.

  • Now, the project is ready to be built. Press F7. The message after the Build Process is finished has to be “0 Errors, 0 Warnings”. To run the program on the board, you have to download the firmware into the microprocessor’s memory.
03 Feb 2012 15:32 · Dragos Bogdan

More information

01 Jun 2012 12:17
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1電子電路原理第七版PDF電子教材免費下載
  2. 0.00 MB  |  1491次下載  |  免費
  3. 2單片機典型實例介紹
  4. 18.19 MB  |  95次下載  |  1 積分
  5. 3S7-200PLC編程實例詳細資料
  6. 1.17 MB  |  27次下載  |  1 積分
  7. 4筆記本電腦主板的元件識別和講解說明
  8. 4.28 MB  |  18次下載  |  4 積分
  9. 5開關電源原理及各功能電路詳解
  10. 0.38 MB  |  11次下載  |  免費
  11. 6100W短波放大電路圖
  12. 0.05 MB  |  4次下載  |  3 積分
  13. 7基于單片機和 SG3525的程控開關電源設計
  14. 0.23 MB  |  4次下載  |  免費
  15. 8基于AT89C2051/4051單片機編程器的實驗
  16. 0.11 MB  |  4次下載  |  免費

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234313次下載  |  免費
  3. 2PADS 9.0 2009最新版 -下載
  4. 0.00 MB  |  66304次下載  |  免費
  5. 3protel99下載protel99軟件下載(中文版)
  6. 0.00 MB  |  51209次下載  |  免費
  7. 4LabView 8.0 專業版下載 (3CD完整版)
  8. 0.00 MB  |  51043次下載  |  免費
  9. 5555集成電路應用800例(新編版)
  10. 0.00 MB  |  33562次下載  |  免費
  11. 6接口電路圖大全
  12. 未知  |  30320次下載  |  免費
  13. 7Multisim 10下載Multisim 10 中文版
  14. 0.00 MB  |  28588次下載  |  免費
  15. 8開關電源設計實例指南
  16. 未知  |  21539次下載  |  免費

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935053次下載  |  免費
  3. 2protel99se軟件下載(可英文版轉中文版)
  4. 78.1 MB  |  537793次下載  |  免費
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420026次下載  |  免費
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234313次下載  |  免費
  9. 5Altium DXP2002下載入口
  10. 未知  |  233046次下載  |  免費
  11. 6電路仿真軟件multisim 10.0免費下載
  12. 340992  |  191183次下載  |  免費
  13. 7十天學會AVR單片機與C語言視頻教程 下載
  14. 158M  |  183277次下載  |  免費
  15. 8proe5.0野火版下載(中文版免費下載)
  16. 未知  |  138039次下載  |  免費
主站蜘蛛池模板: 黄色a站| 日本特黄特色 | 2019天天操夜夜操 | 免费看很黄很色裸乳视频 | 天堂电影免费在线观看 | 五月婷婷丁香在线观看 | ts在线视频 | 98色花堂永久地址国产精品 | 香蕉久久高清国产精品免费 | 深爱开心激情网 | 手机在线观看一级午夜片 | 午夜在线播放视频在线观看视频 | 亚洲 欧美 91 | 欧美一卡二卡3卡4卡无卡六卡七卡科普 | 深夜视频在线播放视频在线观看免费观看 | 嫩草影院播放地址一二三 | 男啪女r18肉车文 | 午夜性视频 | 免费黄色一级毛片 | 真人实干一级毛片aa免费 | 爱爱免费小视频 | 最新版天堂资源中文官网 | 黄视频网站观看 | 免费啪啪小视频 | 天天爱天天干天天 | 亚洲第一狼人社区 | 观看在线人视频 | 亚洲四虎影院 | 一级做性色a爱片久久片 | 在线看av的网址 | 欧美一区二区三区视频 | 日本不卡视频免费的 | 在线免费观看一级毛片 | 五月天激激婷婷大综合丁香 | 国产亚洲人成a在线v网站 | 深夜国产成人福利在线观看女同 | 在线成人亚洲 | 美女操网站 | 91x视频 | 天天干天天操天天干 | 国产一区中文字幕在线观看 |