運算放大器電路全集 所有的運算放大器都有兩個電源引腳,一般在資料中,它們的標識是VCC+和VCC-,但是有些時候它們的標識是VCC+和GND。這是因為有些數據手冊的作者企圖將這種標識的差異作為單電源運放和雙電源運放的區別。但是,這并不是說他們就一定要那樣使用――他們可能可以工作在其他的電壓下。在運放不是按默認電壓供電的時候,需要參考運放的數據手冊,特別是絕對最大供電電壓和電壓擺動說明。 絕大多數的模擬電路設計者都知道怎么在雙電源電壓的條件下使用運算放大器,比如圖一左邊的那個電路,一個雙電源是由一個正電源和一個相等電壓的負電源組成。一般是正負15V,正負12V和正負5V也是經常使用的。輸入電壓和輸出電壓都是參考地給出的,還包括正負電壓的擺動幅度極限Vom以及最大輸出擺幅。 單電源供電的電路(圖一中右)運放的電源腳連接到正電源和地。正電源引腳接到VCC+,地或者VCC-引腳連接到GND。將正電壓分成一半后的電壓作為虛地接到運放的輸入引腳上,這時運放的輸出電壓也是該虛地電壓,運放的輸出電壓以虛地為中心,擺幅在Vom 之內。有一些新的運放有兩個不同的最高輸出電壓和最低輸出電壓。這種運放的數據手冊中會特別分別指明Voh 和Vol 。需要特別注意的是有不少的設計者會很隨意的用虛地來參考輸入電壓和輸出電壓,但在大部分應用中,輸入和輸出是參考電源地的,所以設計者必須在輸入和輸出的地方加入隔直電容,用來隔離虛地和地之間的直流電壓。(參見1.3節)
通常單電源供電的電壓一般是5V,這時運放的輸出電壓擺幅會更低。另外現在運放的供電電壓也可以是3V 也或者會更低。出于這個原因在單電源供電的電路中使用的運放基本上都是Rail-To-Rail 的運放,這樣就消除了丟失的動態范圍。需要特別指出的是輸入和輸出不一定都能夠承受Rail-To-Rail 的電壓。雖然器件被指明是軌至軌(Rail-To-Rail)的,如果運放的輸出或者輸入不支持軌至軌,接近輸入或者接近輸出電壓極限的電壓可能會使運放的功能退化,所以需要仔細的參考數據手冊是否輸入和輸出是否都是軌至軌。這樣才能保證系統的功能不會退化,這是設計者的義務。 1. 2 虛地 單電源工作的運放需要外部提供一個虛地,通常情況下,這個電壓是VCC/2,圖二的電路可以用來產生VCC/2的電壓,但是他會降低系統的低頻特性。
R1 和R2 是等值的,通過電源允許的消耗和允許的噪聲來選擇,電容C1 是一個低通濾波器,用來減少從電源上傳來的噪聲。在有些應用中可以忽略緩沖運放。 在下文中,有一些電路的虛地必須要由兩個電阻產生,但是其實這并不是完美的方法。在這些例子中,電阻值都大于100K,當這種情況發生時,電路圖中均有注明。 1. 3 交流耦合 虛地是大于電源地的直流電平,這是一個小的、局部的地電平,這樣就產生了一個電勢問題:輸入和輸出電壓一般都是參考電源地的,如果直接將信號源的輸出接到運放的輸入端,這將會產生不可接受的直流偏移。如果發生這樣的事情,運放將不能正確的響應輸入電壓,因為這將使信號超出運放允許的輸入或者輸出范圍。 解決這個問題的方法將信號源和運放之間用交流耦合。使用這種方法,輸入和輸出器件就都可以參考系統地,并且運放電路可以參考虛地。當不止一個運放被使用時,如果碰到以下條件級間的耦合電容就不是一定要使用:第一級運放的參考地是虛地 如果有任何疑問,裝配一臺有耦合電容的原型,然后每次取走其中的一個,觀察電工作是否正常。除非輸入和輸出都是參考虛地的,否則這里就必須要有耦合電容來隔離信號源和運放輸入以及運放輸出和負載。一個好的解決辦法是斷開輸入和輸出,然后在所有運放的兩個輸入腳和運放的輸出腳上檢查直流電壓。所有的電壓都必須非常接近虛地的電壓,如果不是,前級的輸出就就必須要用電容做隔離。(或者電路有問題) 1. 4 組合運放電路 在一些應用中,組合運放可以用來節省成本和板上的空間,但是不可避免的引起相互之間的耦合,可以影響到濾波、直流偏置、噪聲和其他電路特性。設計者通常從獨立的功能原型開始設計,比如放大、直流偏置、濾波等等。在對每個單元模塊進行校驗后將他們聯合起來。除非特別說明,否則本文中的所有濾波器單元的增益都是 1。 1. 5 選擇電阻和電容的值 每一個剛開始做模擬設計的人都想知道如何選擇元件的參數。電阻是應該用1 歐的還是應該用1 兆歐的?一般的來說普通的應用中阻值在K 歐級到100K 歐級是比較合適的。高速的應用中阻值在100 歐級到1K 歐級,但他們會增大電源的消耗。便攜設計中阻值在1 兆級到10 兆歐級,但是他們將增大系統的噪聲。用來選擇調整電路參數的電阻電容值的基本方程在每張圖中都已經給出。如果做濾波器,電阻的精度要選擇1% E -96系列(參看附錄A)。一但電阻值的數量級確定了,選擇標準的E-12系列電容。 用E-24系列電容用來做參數的調整,但是應該盡量不用。用來做電路參數調整的電容不應該用5%的,應該用1%。 2.1 放大電路:http://m.xsypw.cn/article/88/131/195/2010/20100416216139.html 放大電路有兩個基本類型:同相放大器和反相放大器。他們的交流耦合版本如圖三所示。對于交流電路,反向的意思是相角被移動180度。這種電路采用了耦合電容 ――Cin 。Cin被用來阻止電路產生直流放大,這樣電路就只會對交流產生放大作用。如果在直流電路中,Cin被省略,那么就必須對直流放大進行計算。 在高頻電路中,不要違反運放的帶寬限制,這是非常重要的。實際應用中,一級放大電路的增益通常是100倍(40dB),再高的放大倍數將引起電路的振蕩,除非在布板的時候就非常注意。如果要得到一個放大倍數比較的大放大器,用兩個等增益的運放或者多個等增益運放比用一個運放的效果要好的多。
2.2 衰減器:http://m.xsypw.cn/article/88/171/2010/20100415216048.html 傳統的用運算放大器組成的反相衰減器如圖四所示。
在電路中R2要小于R1。這種方法是不被推薦的,因為很多運放是不適宜工作在放大倍數小于1倍的情況下。正確的方法是用圖五的電路。
在表一中的一套規格化的R3 的阻值可以用作產生不同等級的衰減。對于表中沒有的阻值,可以用以下的公式計算 R3=(Vo/Vin)/(2-2(Vo/Vin)) 如果表中有值,按以下方法處理: 為Rf和Rin在1K到100K之間選擇一個值,該值作為基礎值。
比如,如果Rf是20K,RinA和RinB都是10K,那么用12.1K的電阻就可以得到-3dB的衰減。
圖六中同相的衰減器可以用作電壓衰減和同相緩沖器使用。
2.3 加法器 http://m.xsypw.cn/article/88/131/amp/2009/2009051660230.html 圖七是一個反相加法器,他是一個基本的音頻混合器。但是該電路的很少用于真正的音頻混合器。因為這會逼近運放的工作極限,實際上我們推薦用提高電源電壓的辦法來提高動態范圍。 同相加法器是可以實現的,但是是不被推薦的。因為信號源的阻抗將會影響電路的增益。
2.4 減法器 就像加法器一樣,圖八是一個減法器。一個通常的應用就是用于去除立體聲磁帶中的原唱而留下伴音(在錄制時兩通道中的原唱電平是一樣的,但是伴音是略有不同的)。
2.5 模擬電感http://m.xsypw.cn/article/88/131/protect/2009/2009040342980.html 圖九的電路是一個對電容進行反向操作的電路,它用來模擬電感。電感會抵制電流的變化,所以當一個直流電平加到電感上時電流的上升是一個緩慢的過程,并且電感中電阻上的壓降就顯得尤為重要。
電感會更加容易的讓低頻通過它,它的特性正好和電容相反,一個理想的電感是沒有電阻的,它可以讓直流電沒有任何限制的通過,對頻率是無窮大的信號有無窮大的阻抗。 如果直流電壓突然通過電阻R1 加到運放的反相輸入端上的時候,運放的輸出將不會有任何的變化,因為這個電壓同過電容C1 也同樣加到了正相輸出端上,運放的輸出端表現出了很高的阻抗,就像一個真正的電感一樣。 隨著電容C1 不斷的通過電阻R2 進行充電,R2上電壓不斷下降,運放通過電阻R1汲取電流。隨著電容不斷的充電,最后運放的兩個輸入腳和輸出腳上的電壓最終趨向于虛地(Vcc/2)。 當電容C1 完全被充滿時,電阻R1 限制了流過的電流,這就表現出一個串連在電感中電阻。這個串連的電阻就限制了電感的Q 值。真正電感的直流電阻一般會比模擬的電感小的多。這有一些模擬電感的限制: 電感的一段連接在虛地上; 2.6 儀用放大器http://m.xsypw.cn/article/88/131/amp/2009/2009071377047.html 儀用放大器用于需要對小電平信號直流信號進行放大的場合,他是由減法器拓撲而來的。儀用放大器利用了同相輸入端高阻抗的優勢。基本的儀用放大器如圖十所示。
這個電路是基本的儀用放大電路,其他的儀用放大器也如圖中所示,這里的輸入端也使用了單電源供電。這個電路實際上是一個單電源的應變儀。這個電路的缺點是需要完全相等的電阻,否則這個電路的共模抑制比將會很低。 圖十中的電路可以簡單的去掉三個電阻,就像圖十一中的電路。
這個電路的增益非常好計算。但是這個電路也有一個缺點:那就是電路中的兩個電阻必須一起更換,而且他們必須是等值的。另外還有一個缺點,第一級的運放沒有產生任何有用的增益。 另外用兩個運放也可以組成儀用放大器,就像圖十二所示。
但是這個儀用放大器是不被推薦的,因為第一個運放的放大倍數小于一,所以他可能是不穩定的,而且Vin -上的信號要花費比Vin +上的信號更多的時間才能到達輸出端。 這節非常深入地介紹了用運放組成的有源濾波器。在很多情況中,為了阻擋由于虛地引起的直流電平,在運放的輸入端串入了電容。這個電容實際上是一個高通濾波器,在某種意義上說,像這樣的單電源運放電路都有這樣的電容。設計者必須確定這個電容的容量必須要比電路中的其他電容器的容量大100 倍以上。這樣才可以保證電路的幅頻特性不會受到這個輸入電容的影響。如果這個濾波器同時還有放大作用,這個電容的容量最好是電路中其他電容容量的1000 倍以上。如果輸入的信號早就包含了VCC/2 的直流偏置,這個電容就可以省略。 這些電路的輸出都包含了VCC/2 的直流偏置,如果電路是最后一級,那么就必須串入輸出電容。 這里有一個有關濾波器設計的協定,這里的濾波器均采用單電源供電的運放組成。濾波器的實現很簡單,但是以下幾點設計者必須注意: 1. 濾波器的拐點(中心)頻率 不幸的是要得到一個完全理想的濾波器是無法用一個運放組成的。即使可能,由于各個元件之間的負雜互感而導致設計者要用非常復雜的計算才能完成濾波器的設計。通常對波形的控制要求越復雜就意味者需要更多的運放,這將根據設計者可以接受的最大畸變來決定。或者可以通過幾次實驗而最終確定下來。如果設計者希望用最少的元件來實現濾波器,那么就別無選擇,只能使用傳統的濾波器,通過計算就可以得到了。 3.1 一階濾波器 一階濾波器是最簡單的電路,他們有20dB 每倍頻的幅頻特性 3.1.1 低通濾波器http://m.xsypw.cn/article/88/131/filter/2009/20091207125762.html 典型的低通濾波器如圖十三所示。
3.1.2 高通濾波器http://m.xsypw.cn/article/88/131/filter/2009/20091207125732.html 典型的高通濾波器如圖十四所示。
3.1.3 文氏濾波器http://m.xsypw.cn/article/88/131/filter/2009/20091207125766.html 文氏濾波器對所有的頻率都有相同的增益,但是它可以改變信號的相角,同時也用來做相角修正電路。圖十五中的電路對頻率是F 的信號有90 度的相移,對直流的相移是0度,對高頻的相移是180度。
3.2 二階濾波器 二階濾波電路一般用他們的發明者命名。他們中的少數幾個至今還在使用。有一些二階濾波器的拓撲結構可以組成低通、高通、帶通、帶阻濾波器,有些則不行。這里沒有列出所有的濾波器拓撲結構,只是將那些容易實現和便于調整的列了出來。 二階濾波器有40dB 每倍頻的幅頻特性。 通常的同一個拓撲結構組成的帶通和帶阻濾波器使用相同的元件來調整他們的Q 值,而且他們使濾波器在Butterworth 和Chebyshev 濾波器之間變化。必須要知道只有Butterworth 濾波器可以準確的計算出拐點頻率,Chebyshev 和Bessell濾波器只能在Butterworth 濾波器的基礎上做一些微調。 我們通常用的帶通和帶阻濾波器有非常高的Q 值。如果需要實現一個很寬的帶通或者帶阻濾波器就需要用高通濾波器和低通濾波器串連起來。對于帶通濾波器的通過特性將是這兩個濾波器的交疊部分,對于帶阻濾波器的通過特性將是這兩個濾波器的不重疊部分。 這里沒有介紹反相 Chebyshev 和 Elliptic 濾波器,因為他們已經不屬于電路集需要介紹的范圍了。 不是所有的濾波器都可以產生我們所設想的結果――比如說濾波器在阻帶的最后衰減幅度在多反饋濾波器中的會比在Sallen-Key 濾波器中的大。由于這些特性超出了電路圖集的介紹范圍,請大家到教科書上去尋找每種電路各自的優缺點。不過這里介紹的電路在不是很特殊的情況下使用,其結果都是可以接受的。 3.2.1 Sallen-Key濾波器 Sallen-Key 濾波器是一種流行的、廣泛應用的二階濾波器。他的成本很低,僅需要一個運放和四個無源器件組成。但是換成Butterworth 或Chebyshev 濾波器就不可能這么容易的調整了。請設計者參看參考條目【1】和參考條目【2】,那里介紹了各種拓撲的細節。 這個電路是一個單位增益的電路,改變Sallen-Key 濾波器的增益同時就改變了濾波器的幅頻特性和類型。實際上Sallen-Key 濾波器就是增益為1的Butterworth 濾波器。
3.2.2 多反饋濾波器 多反饋濾波器是一種通用,低成本以及容易實現的濾波器。不幸的是,設計時的計算有些復雜,在這里不作深入的介紹。請參看參考條目【1】中的對多反饋濾波器的細節介紹。如果需要的是一個單位增益的Butterworth 濾波器,那么這里的電路就可以給出一個近似的結果。
3.2.3 雙T濾波器 雙T 濾波器既可以用一個運放也可儀用兩個運放實現。他是建立在三個電阻和三個電容組成的無源網絡上的。這六個元件的匹配是臨界的,但幸運的是這仍是一個常容易的過程,這個網絡可以用同一值的電阻和同一值的電容組成。用圖中的公式就可以同時的將R3 和C3 計算出來。應該盡量選用同一批的元件,他們有非常相近的特性。 3.2.3.1 單運放實現
如果用參數非常接近的元件組成帶通濾波器,就很容易發生振蕩。接到虛地的電阻最好在E-96 1%系列中選擇,這樣就可以破壞振蕩條件。
3.2.3.2 雙運放實現 典型的雙運放如圖20到圖22所示
|
運算放大器電路全集
相關推薦
LM324運算放大器應用電路全集
LM324運算放大器應用電路全集
LM324是四運放集成電路,它采用14腳雙列直插塑料封裝,外形如圖所示。它的內部包含四組形式完全相同的運算放大器, 除電源共用外,四組運
2010-04-24 11:01:3519905
集成電路運算放大器與理想集成運算放大器
在模擬電路基礎中運算放大器作為基礎的元器件,熟知其基礎知識對于電子工程師來說很重要。本文將介紹繼承電路運算放大器的原理、符號、電路模型等基礎知識。
2017-01-16 13:54:378850
放大器教程:運算放大器基礎學習
–當前“輸入”和當前“輸出”跨導–電壓“輸入”和電流“輸出”跨阻–電流“輸入”和電壓“輸出”由于涉及運算放大器的大多數電路都是電壓放大器,因此我們將本節中的教程僅限于電壓放大器(Vin和Vout
2020-12-25 09:05:21
運算放大器
最近一直都在介紹各種器材,今天帶領大家了解下運算放大器。運算放大器,簡稱運放。咋一看,還以為是運算和放大分開,兩種功能呢。其實它只是具有很高放大倍數的電路單元。在實際電路中,通常結合反饋網絡共同
2014-04-23 18:01:58
運算放大器電路介紹
運算放大器組成的電路五花八門,令人眼花瞭亂。工程師在分析它的工作原理時常抓不住核心,令人頭大。為此小編特地搜羅天下運放電路之應用,來個“庖丁解牛”,希望各位看完后有所收獲。遍觀所有模擬電子技術的書籍
2021-12-29 06:21:01
運算放大器和比較器的電路結構
運算放大器的電路結構運算放大器的內部電路結構如下所示。一般由輸入段、增益段、輸出段等3段電路構成。輸入段由差分放大段構成,用于放大兩個引腳間的電壓差。 另外,同相信號成分(引腳間無電位差,輸入相等
2019-05-27 02:48:52
運算放大器權威指南和基于運算放大器和模擬集成電路的電路設計及OP放大器應用技巧100例PDF分享
RF設計領域,回歸到了全差分結構,也開啟了在差分信號鏈接口中的新應用領域。如何得心應手地應用運算放大器,快速、準確地設計滿足需求的電路系統,是工程師們必須認真面對的問題。本書出自全球領先的半導體公司
2017-06-09 17:38:49
運算放大器測試基礎之電路測試主要運算放大器參數
作者:Martin Rowe — 2011 年 11 月 16 日1979 年 1 月,《電子測試》發表了一篇文章稱,一款單個測試電路可“執行對任何運算放大器全面檢查所需的所有標準 DC 測試
2018-09-07 11:04:43
運算放大器的工作原理
的信號反饋到反相輸入端(稱為負反饋)來降低它的放大倍數。如圖1-3中左圖所示,R1的作用就是將輸出的信號返回到運算放大器的反相輸入端,由于反相輸入端與輸出的電壓是相反的,所以會減小電路的放大倍數,是一
2018-10-12 09:42:13
運算放大器類型總結
=50~70V/us,BWG>20MHz。 5.低功耗型運算放大器由于電子電路集成化的最大優點是能使復雜電路小型輕便,所以隨著便攜式儀器應用范圍的擴大,必須使用低電源電壓供電、低功率消耗的運算放大器相適用
2019-09-26 16:40:31
運算放大器選擇
前級用運算放大器AD845,輸出正弦波(10K-300K)電壓0-5V峰值,連接AD734A芯片,中間想加一個雙運算放大器作為電壓跟隨器,選擇什么型號的雙運算放大器?
2018-10-11 09:50:22
【案例分享】運算放大器電路解析及零漂處理
運算放大器核心是一個差動放大器。就是兩個三極管背靠背連著。共同分擔一個橫流源的電流。三極管一個是運放的正向輸入,一個是反向輸入。正向輸入的三極管放大后送到一個功率放大電路放大輸出。這樣,如果正向輸入
2019-07-18 04:00:00
什么是運算放大器
當輸入電壓相等時,運算放大器通常在線性范圍內工作,而運算放大器正是在線性范圍內準確地執行上述功能。然而,運算放大器只能改變一個條件來使輸入電壓相等,即輸出電壓。因此,運算放大器的輸出通常以某種方式
2022-11-08 06:42:08
什么是運算放大器和比較器?
。每個電路由正側電源引腳、負側電源引腳、+輸入引腳、-輸入引腳、輸出引腳等5個引腳構成。*通常電源、輸入、輸出分類以外的引腳名稱未進行統一運算放大器、比較器的圖解符號運算放大器的電源引腳名稱示例運算放大器
2019-04-23 22:49:51
什么是運算放大器和比較器?
。每個電路由正側電源引腳、負側電源引腳、+輸入引腳、-輸入引腳、輸出引腳等5個引腳構成。*通常電源、輸入、輸出分類以外的引腳名稱未進行統一運算放大器、比較器的圖解符號運算放大器的電源引腳名稱示例運算放大器
2019-05-26 23:36:35
使用運算放大器帶寬計算的設計實例
需運算放大器增益帶寬積進行基本穩定性分析,我們將獲得本步驟背后的邏輯,如果您只想進行計算,可以直接跳到公式 5。圖 1 是用于分析的 TINA-TI? 電路。反饋環路使用大電感器 (L1) 中斷,而
2018-09-13 15:10:54
關于運算放大器的相位補償如何選擇?
第一、運算放大器偏置電流如何補償?第二、 運算放大器調零電路的示意圖是怎樣?第三、 相位補償如何選擇?第四、 容性負載改怎么處理?
2021-04-06 08:40:23
同相運算放大器電路設計教程
運算放大器電路的第二種基本配置是同相運算放大器設計。在這種配置中,輸入電壓信號(V IN)直接施加到同相(+)輸入端子,這意味著與“反相放大器”電路相比,放大器的輸出增益的值變為“正”我們在上
2020-12-28 09:35:53
同相運算放大器電路設計教程
運算放大器電路的第二種基本配置是同相運算放大器設計。在這種配置中,輸入電壓信號(V IN)直接施加到同相(+)輸入端子,這意味著與“反相放大器”電路相比,放大器的輸出增益的值變為“正”我們在上
2022-06-23 10:30:57
基于運算放大器的放大電路解析
設計中,就有很多這樣的模擬信號需要放大,比如說各種電壓、電流、壓力等。在處理這些信號的過程中,我們用到了大量的基于運算放大器的放大電路。 1、同相放大器 像這種同相放大器,我們在電子產品中用
2021-02-20 16:21:09
如何設計出一款低壓狀態下的運算放大器電流反饋運算放大器?
電壓模式放大器有一個明顯的缺點就是隨著被處理信號的頻率越來越高,電壓模式電路的固有缺點開始阻礙它在高頻高速環境中的應用。為克服這些缺點,本文設計了低壓狀態下的運算放大器電流反饋運算放大器。
2021-04-14 06:34:44
怎樣運用負反饋模型去分析運算放大器電路?
運算放大器電路的等效負反饋模型有哪些?環路增益對運算放大器電路閉環參數有什么影響?環路增益對運算放大器電路穩定性有什么影響?
2021-04-20 07:17:57
簡單運算放大器電路噪聲的演算過程是怎樣的?
簡單運算放大器電路噪聲的演算過程是怎樣的?如何將電流噪聲源轉換為電壓噪聲源呢?如何用運算放大器噪聲源模型去計算簡單運算放大器電路的總輸出噪聲?
2021-04-21 07:12:33
轉向特定應用的運算放大器
安森美半導體產品陣容中的大多數放大器是通用或商用元件。它們需要在參考設計中與其它元件相輔相成,但通常起支援作用,而不是主要作用。近年來,應電路設計人員的要求創建了一些專用的運算放大器(op amps
2018-10-22 08:57:48
非理想運算放大器的問題
電路如上圖所示,已知條件:運算放大器是非理想的。兩個輸入都有電流,假設是0.7uA。只有是RF是已知的,是450kΩ。開環增益很高。閉環增益需要在13左右。初始Vin和Vout不明。問題:Vin要加多少電壓才能消除非理想運算放大器的影響。我用Vout/Vin=1+Rf/R2來找R2,然后就卡殼了。
2018-09-28 15:12:40
運算放大器設計與應用
一、 運算放大器設計應用經典問答集粹二、 四類運算放大器的技術發展趨勢及其應用熱點
一、 運算放大器設計應用經典問答集粹1. 用運算放大器做正弦波振蕩有哪些
2008-05-13 08:58:5691
集成運算放大器的應用
實驗八 集成運算放大器一、實驗目的1.學習集成運算放大器的使用方法。2.掌握集成運算放大器的幾種基本運算方法。二、預習內容及要求集成運算放大器是具
2008-08-04 15:08:2961
怎樣使用運算放大器
怎樣使用運算放大器本書主要介紹如何使用運算放大器,書中以通俗易懂的形式,結合實用介紹了各種運算放大器的原理和應用。內容分為運算放大器,基本電路,振
2009-05-16 09:38:000
怎樣使用運算放大器(葉治政,翟鈺 譯)
怎樣使用運算放大器(葉治政,翟鈺 譯)
本書主要介紹如何使用運算放大器。書中以通俗易懂的形式,結合實用介紹了各種運算放大電路的原理和應用。
2010-03-26 18:12:59654
光二極管運算放大器T形反饋電路-直接反饋電路-差分放大器電路
光二極管運算放大器 T形反饋電路 光二極管運算放大器直接反饋電路 光二極管運算放大器差分放大器電路
2008-05-15 09:56:191588
通用型運算放大器,通用型運算放大器是什么意思
通用型運算放大器,通用型運算放大器是什么意思
通用型運算放大器的組成
通用型運算放大器就是以通用為目的而設計的。這類器件的主
2010-03-09 15:42:306372
運算放大器和放大電路有何區別
本文先后對運算放大器和放大電路進行了詳細介紹,其中包括了運算放大器的原理、經典運算放大器電路圖和放大電路特點及三極管放大電路圖,最后闡述了運算放大器和放大電路的區別。
2018-02-24 13:41:5052484
兩級COMS運算放大器的資料和設計說明
CMOS運算放大器的基本分類1、單級差分運算放大器(電流鏡做負載的差分放大器)2、套筒式共源共柵CMOS運算放大器(單級)3、折疊共源共柵CMOS運算放大器(單級)4、兩級CMOS運算放大器
5、Rail-to-Rail CMOS運算放大器6、Chopper CMOS運算放大器 運放的概念、組成與電路結構
2018-11-07 10:10:5789
運算放大器電路摘要
運算放大器摘要表定義了各種運算放大器配置的基本特性,我們可以在本節結束并查看運算放大器,其中包含以下摘要:本運算放大器教程部分討論了不同類型的運算放大器電路及其不同配置。
2019-06-26 08:57:0612151
通用運算放大器有什么特性
盡管通用運算放大器應用廣泛,但它們也可以作為許多其他電路的基礎。在本文中,英銳恩單片機開發工程師將對通用運算放大器的特性進行講解。要了解通用運算放大器,得先了解它的特性,圍繞通用運算放大器的電路有很多,這些通常都是為了易于設計和構建電路。
2020-05-15 09:30:041972
運算放大器測試基礎第3部分:可配置電路測試運算放大器
作者:Martin Rowe — 2011 年 11 月 16 日
在本系列的第 1 部分中,我們為大家介紹了三種運算放大器測試電路:自測試電路、雙運算放大器環路以及三運算放大器環路。這些電路
2021-11-23 17:41:501409
運算放大器的基本電路有哪些
運算放大器是一種可以進行數學運算的放大電路。運算放大器不僅可以通過增大或減小模擬輸入信號來實 現放大,還可以進行加減法以及微積分等運算。所以,運算放大器是一種用途廣泛,又便于使用的集成電路。
2023-04-24 14:57:584229
如何設計運算放大器 運算放大器同相放大器電路設計技巧有哪些
同相放大器(non-inverting amplifier )配置是最流行和最廣泛使用的運算放大器電路形式之一,并且用于許多電子電路設計中。
運算放大器同相放大器電路提供高輸入阻抗以及使用運算放大器獲得的所有優點。
2023-08-04 09:11:133084
運算放大器調零的一般步驟是什么?
運算放大器調零的一般步驟是什么? 運算放大器調零是電路設計過程中非常重要的一個步驟,它能夠確保運算放大器的輸出為零,從而避免電路誤差和噪聲干擾。下面是該過程的一般步驟: 步驟一:概述運算放大器
2023-09-19 17:43:112489
運算放大器電路分析串并聯
運算放大器是一種非常重要的電路,廣泛應用于模擬電路中。在本文中,我們將詳細分析運算放大器電路的串并聯。 運算放大器(Operational Amplifier,簡稱OP-AMP)是一種電子放大器
2023-12-20 09:40:20391
比例運算放大器常見電路有哪些
比例運算放大器是一種常用的電路,用于將輸入信號放大到需要的比例。它可以被廣泛應用于工業自動化、儀器儀表、通信系統等領域。下面將詳細介紹比例運算放大器的常見電路。 構成比例運算放大器的基本電路 比例
2023-12-26 11:12:24441
評論
查看更多