在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò):CNN的求解

如意 ? 來(lái)源:CSDN ? 作者:呆呆的貓 ? 2020-08-24 16:04 ? 次閱讀

CNN的求解

CNN在本質(zhì)上是一種輸入到輸出的映射,它能夠?qū)W習(xí)大量的輸入與輸出之間的映射關(guān)系,而不需要任何輸入和輸出之間的精確的數(shù)學(xué)表達(dá)式,只要用已知的模式對(duì)卷積網(wǎng)絡(luò)加以訓(xùn)練,網(wǎng)絡(luò)就具有輸入輸出對(duì)之間的映射能力。

卷積網(wǎng)絡(luò)執(zhí)行的是監(jiān)督訓(xùn)練,所以其樣本集是由形如:**(輸入向量,理想輸出向量)**的向量對(duì)構(gòu)成的。所有這些向量對(duì),都應(yīng)該是來(lái)源于網(wǎng)絡(luò)即將模擬系統(tǒng)的實(shí)際“運(yùn)行”結(jié)構(gòu),它們可以是從實(shí)際運(yùn)行系統(tǒng)中采集來(lái)。

1)參數(shù)初始化:

在開(kāi)始訓(xùn)練前,所有的權(quán)都應(yīng)該用一些不同的隨機(jī)數(shù)進(jìn)行初始化。“小隨機(jī)數(shù)”用來(lái)保證網(wǎng)絡(luò)不會(huì)因權(quán)值過(guò)大而進(jìn)入飽和狀態(tài),從而導(dǎo)致訓(xùn)練失敗;“不同”用來(lái)保證網(wǎng)絡(luò)可以正常地學(xué)習(xí)。實(shí)際上,如果用相同的數(shù)去初始化權(quán)矩陣,則網(wǎng)絡(luò)無(wú)學(xué)習(xí)能力。

2)訓(xùn)練過(guò)程包括四步

① 第一階段:前向傳播階段

從樣本集中取一個(gè)樣本,輸入網(wǎng)絡(luò)

計(jì)算相應(yīng)的實(shí)際輸出;在此階段信息從輸入層經(jīng)過(guò)逐級(jí)的變換,傳送到輸出層,這個(gè)過(guò)程也是網(wǎng)絡(luò)在完成訓(xùn)練之后正常執(zhí)行時(shí)執(zhí)行的過(guò)程

② 第二階段:后向傳播階段

計(jì)算實(shí)際輸出與相應(yīng)的理想輸出的差

按照極小化誤差的方法調(diào)整權(quán)值矩陣

網(wǎng)絡(luò)的訓(xùn)練過(guò)程如下:

選定訓(xùn)練組,從樣本集中分別隨機(jī)地尋求N個(gè)樣本作為訓(xùn)練組;

將各權(quán)值、閾值,置成小的接近于0的隨機(jī)值,并初始化精度控制參數(shù)和學(xué)習(xí)率;

從訓(xùn)練組中取一個(gè)輸入模式加到網(wǎng)絡(luò),并給出它的目標(biāo)輸出向量;

計(jì)算出中間層輸出向量,計(jì)算出網(wǎng)絡(luò)的實(shí)際輸出向量;

將輸出向量中的元素與目標(biāo)向量中的元素進(jìn)行比較,計(jì)算出輸出誤差;對(duì)于中間層的隱單元也需要計(jì)算出誤差;

依次計(jì)算出各權(quán)值的調(diào)整量和閾值的調(diào)整量;

調(diào)整權(quán)值和調(diào)整閾值;

當(dāng)經(jīng)歷M后,判斷指標(biāo)是否滿足精度要求,如果不滿足,則返回(3),繼續(xù)迭代;如果滿足就進(jìn)入下一步;

訓(xùn)練結(jié)束,將權(quán)值和閾值保存在文件中。這時(shí)可以認(rèn)為各個(gè)權(quán)值已經(jīng)達(dá)到穩(wěn)定,分類(lèi)器已經(jīng)形成。再一次進(jìn)行訓(xùn)練,直接從文件導(dǎo)出權(quán)值和閾值進(jìn)行訓(xùn)練,不需要進(jìn)行初始化。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4783

    瀏覽量

    101236
  • 卷積
    +關(guān)注

    關(guān)注

    0

    文章

    95

    瀏覽量

    18550
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    353

    瀏覽量

    22354
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    TF之CNN:Tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的嘻嘻哈哈事之詳細(xì)攻略

    TF之CNN:Tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的嘻嘻哈哈事之詳細(xì)攻略
    發(fā)表于 12-19 17:03

    利用Keras實(shí)現(xiàn)四種卷積神經(jīng)網(wǎng)絡(luò)(CNN)可視化

    Keras實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)(CNN)可視化
    發(fā)表于 07-12 11:01

    卷積神經(jīng)網(wǎng)絡(luò)如何使用

    卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問(wèn)題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
    發(fā)表于 07-17 07:21

    卷積神經(jīng)網(wǎng)絡(luò)原理及發(fā)展過(guò)程

    Top100論文導(dǎo)讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅰ)
    發(fā)表于 09-06 17:25

    卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

    【深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
    發(fā)表于 06-14 18:55

    卷積神經(jīng)網(wǎng)絡(luò)CNN圖解

    之前在網(wǎng)上搜索了好多好多關(guān)于CNN的文章,由于網(wǎng)絡(luò)上的文章很多斷章取義或者描述不清晰,看了很多youtobe上面的教學(xué)視頻還是沒(méi)有弄懂,最后經(jīng)過(guò)痛苦漫長(zhǎng)的煎熬之后對(duì)于神經(jīng)網(wǎng)絡(luò)卷積有了
    發(fā)表于 11-16 13:18 ?5.8w次閱讀
    <b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>CNN</b>圖解

    卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析-LeNet

    對(duì)于神經(jīng)網(wǎng)絡(luò)卷積有了粗淺的了解,關(guān)于CNN 卷積神經(jīng)網(wǎng)絡(luò),需要總結(jié)深入的知識(shí)有很多:人工神經(jīng)網(wǎng)絡(luò)
    發(fā)表于 11-16 13:28 ?2834次閱讀
    <b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b><b class='flag-5'>CNN</b>架構(gòu)分析-LeNet

    卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析 - LeNet

    之前在網(wǎng)上搜索了好多好多關(guān)于CNN的文章,由于網(wǎng)絡(luò)上的文章很多斷章取義或者描述不清晰,看了很多youtobe上面的教學(xué)視頻還是沒(méi)有弄懂,最后經(jīng)過(guò)痛苦漫長(zhǎng)的煎熬之后對(duì)于神經(jīng)網(wǎng)絡(luò)卷積有了
    發(fā)表于 10-02 07:41 ?696次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)

    卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 08-21 16:41 ?3162次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

    卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù)
    的頭像 發(fā)表于 08-21 16:49 ?1966次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型

    cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型 生成卷積神經(jīng)網(wǎng)
    的頭像 發(fā)表于 08-21 17:11 ?1315次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn)是什么

    cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn)是什么?
    的頭像 發(fā)表于 08-21 17:15 ?1740次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)模型

    cnn卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積
    的頭像 發(fā)表于 08-21 17:15 ?2222次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼

    cnn卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼 卷積
    的頭像 發(fā)表于 08-21 17:16 ?2795次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)分類(lèi)有哪些

    卷積神經(jīng)網(wǎng)絡(luò)CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像分類(lèi)、目標(biāo)檢測(cè)、語(yǔ)義分割等領(lǐng)域。本文將詳細(xì)介紹CNN在分類(lèi)任務(wù)中的應(yīng)用,包括基本結(jié)構(gòu)、關(guān)鍵技術(shù)、常見(jiàn)
    的頭像 發(fā)表于 07-03 09:28 ?772次閱讀
    主站蜘蛛池模板: 欧美亚洲天堂网 | 高清一区二区 | 岛国片欧美一级毛片 | 亚洲成a人片在线观看www | 性欧美乱又伦 | 久久国产免费观看精品1 | 五月婷婷七月丁香 | 一及黄色| 国产一区二区影院 | 亚洲精品久久婷婷爱久久婷婷 | 全国男人的天堂天堂网 | chinese国产videoxx实拍 | 羞涩妩媚玉腿呻吟嗯啊销魂迎合 | 国产一级αv片免费观看 | 俄罗斯aaaaa一级毛片 | 奇米网狠狠干 | 久久综合香蕉久久久久久久 | 欧美女同在线观看 | 日日干夜夜草 | 国产精品午夜久久久久久99热 | 国产自在自线午夜精品视频在 | 国产黄色三级三级三级 | 天堂社区在线视频 | 久久天天躁狠狠躁夜夜不卡 | 欧美zo| 欧美第一色 | 一级视频在线免费观看 | 真爽~张开腿~让我插 | a久久久久一级毛片护士免费 | 天天操天天曰 | 天天夜夜人人 | 日产乱码免费一卡二卡在线 | 男女午夜剧场 | 国产一级特黄生活片 | 国内一级特黄女人精品毛片 | 国产精品yy9299在线观看 | 日韩欧美卡通动漫在线观看 | 婷婷综合色 | 青草视频在线观看国产 | 中文字幕一区视频 | 视频在线观看高清免费看 |