91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

利用圖神經(jīng)網(wǎng)絡(luò)讓谷歌地圖實現(xiàn)新突破

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來源:搜狐網(wǎng) ? 作者:搜狐網(wǎng) ? 2020-09-08 10:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

公交車、出租車等交通工具的到達時間是影響公眾出行的一大因素。所以,預(yù)估到達時間(ETA)準(zhǔn)確率成為非常實際的研究課題。近日,DeepMind 與谷歌地圖展開合作,利用圖神經(jīng)網(wǎng)絡(luò)等 ML 技術(shù),極大了提升了柏林、東京、悉尼等大城市的實時 ETA 準(zhǔn)確率。

很多人使用谷歌地圖(Google Maps)獲取精確的交通預(yù)測和預(yù)估到達時間(Estimated Time of Arrival,ETA)。這是很重要的工具,尤其是當(dāng)你將途經(jīng)交通擁堵路段或者需要按時參加重要的會議。 此外,對于拼車服務(wù)公司等企業(yè)而言,這些功能也很有用。它們使用 Google Maps 平臺獲取接送時間信息并基于乘車時間估計價格。 DeepMind 研究者與 Google Maps 團隊展開合作,嘗試通過圖神經(jīng)網(wǎng)絡(luò)等高級機器學(xué)習(xí)技術(shù),提升柏林、雅加達、圣保羅、悉尼、東京和華盛頓哥倫比亞特區(qū)等地的實時 ETA 準(zhǔn)確率,最高提升了 50%。下圖為這些城市的 ETA 提升率:

Google Maps 如何預(yù)測 ETA 為了計算 ETA,Google Maps 分析了世界各地不同路段的實時交通數(shù)據(jù)。這些數(shù)據(jù)為 Google Maps 提供了目前交通狀況的精確圖景,但是它卻無法幫助司機預(yù)計車程時間是 10 分鐘、20 分鐘,還是 50 分鐘。 所以,為了精確地預(yù)測未來交通狀況,Google Maps 使用機器學(xué)習(xí)將全球道路的實時交通狀況和歷史交通模式結(jié)合起來。這一過程非常復(fù)雜,原因很多。例如,早晚高峰每天都會有,但每一天、每一月的高峰期確切時間有很大不同。道路質(zhì)量、限速、交通事故等因素也增加了交通預(yù)測模型的復(fù)雜度。 DeepMind 團隊與 Google Maps 合作嘗試提升 ETA 準(zhǔn)確率。Google Maps 對超過 97% 的行程有著精確的 ETA 預(yù)測,DeepMind 與 Google Maps 的合作目的是將剩下那些預(yù)測不準(zhǔn)確的情況最小化,例如臺中(Taichung)的 ETA 預(yù)測準(zhǔn)確率提升了 50% 多。 為了在全球范圍內(nèi)實現(xiàn)這一目的,DeepMind 利用了一種通用機器學(xué)習(xí)架構(gòu)——圖神經(jīng)網(wǎng)絡(luò)(GNN),通過向模型添加關(guān)系學(xué)習(xí)偏置來進行時空推理,進而建模現(xiàn)實世界道路網(wǎng)絡(luò)的連通性。具體步驟如下: 將世界上的道路分割為超級路段(Supersegment) 該團隊將道路網(wǎng)絡(luò)分割為包含多個鄰近路段的「超級路段」,超級路段都具有極大的交通流量。目前,Google Maps 交通預(yù)測系統(tǒng)包括以下組件:

路線分析器:具備數(shù) TB 的交通信息,可用于構(gòu)建超級路段;

新型 GNN 模型:使用多個目標(biāo)函數(shù)進行優(yōu)化,能夠預(yù)測每個超級路段的行程時間。

Google Maps 確定最優(yōu)路線和行程時間的模型架構(gòu)圖示。 用新型機器學(xué)習(xí)架構(gòu)進行交通預(yù)測 利用超級路段創(chuàng)建估計行程時間的機器學(xué)習(xí)系統(tǒng),所面臨的最大挑戰(zhàn)是架構(gòu)問題。如何以任意準(zhǔn)確率表示連接路段的規(guī)模可變樣本,進而保證單個模型也能預(yù)測成功? DeepMind 團隊最初的概念證明始于一種簡單明了的方法,該方法盡可能地利用現(xiàn)有的交通系統(tǒng),特別是已有的路網(wǎng)分割和相關(guān)的實時數(shù)據(jù) pipeline。這意味著超級路段覆蓋了一組路段,其中每個路段都有特定的長度和相應(yīng)的速度特征。 首先,該團隊為每個超級路段訓(xùn)練了一個全連接神經(jīng)網(wǎng)絡(luò)模型。初步結(jié)果良好,表明神經(jīng)網(wǎng)絡(luò)在預(yù)測行程時間方面是很有潛力的。但是,鑒于超級路段的可變規(guī)模,該團隊需要為每個超級路段單獨訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型。要想實現(xiàn)大規(guī)模部署,則必須訓(xùn)練數(shù)百萬個這樣的模型,這就對基礎(chǔ)設(shè)施構(gòu)成了巨大的挑戰(zhàn)。 因此,該團隊開始研究能夠處理可變長度序列的模型,例如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)。但是,向 RNN 添加來自道路網(wǎng)絡(luò)的結(jié)構(gòu)是很難的。于是,研究者決定使用圖神經(jīng)網(wǎng)絡(luò)。在對交通情況進行建模時,車輛如何穿過道路網(wǎng)絡(luò)是該研究的關(guān)注點,而圖神經(jīng)網(wǎng)絡(luò)可以對網(wǎng)絡(luò)動態(tài)和信息傳播進行建模。 該團隊提出的模型將局部道路網(wǎng)絡(luò)視為一個圖,其中每個路段對應(yīng)一個節(jié)點,連接兩個路段(節(jié)點)的邊要么在同一條道路上,要么通過交叉點(路口)連接。在圖神經(jīng)網(wǎng)絡(luò)中執(zhí)行消息傳遞算法時,其傳遞的消息及其對邊和節(jié)點狀態(tài)的影響均由神經(jīng)網(wǎng)絡(luò)學(xué)得。從這個角度看,超級路段是根據(jù)交通密度隨機采樣的道路子圖。因此,使用這些采樣的子圖能夠訓(xùn)練單個模型,且單個模型可以進行大規(guī)模部署。

圖神經(jīng)網(wǎng)絡(luò)通過泛化「相似度(proximity)」概念,擴展了卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)所施加的學(xué)習(xí)偏置(learning bias),進而具備任意復(fù)雜度的連接,不僅可以處理道路前后方的交通情況,還可以處理相鄰和相交道路的情況。在圖神經(jīng)網(wǎng)絡(luò)中,相鄰節(jié)點之間互相傳遞消息。在保持這種結(jié)構(gòu)的情況下,研究者施加了局部偏置,節(jié)點將更容易依賴于相鄰節(jié)點(這僅需要一個消息傳遞步)。這些機制使圖神經(jīng)網(wǎng)絡(luò)可以更高效地利用道路網(wǎng)絡(luò)的連通性結(jié)構(gòu)。 實驗表明,將考慮范圍擴展到不屬于主要道路的相鄰道路能夠提高預(yù)測能力。例如,考慮小路上的擁堵狀況對大路交通情況的影響。通過跨越多個交叉路口,該模型能夠預(yù)測轉(zhuǎn)彎處的延誤、并道引起的延誤,以及走走停停交通狀況的通行時間。圖神經(jīng)網(wǎng)絡(luò)在組合空間上的泛化能力使得該研究的建模技術(shù)具備強大能力。 每個超級路段的長度和復(fù)雜度可能各有不同(從簡單的兩段路到包含了數(shù)百個節(jié)點的較長路徑),但它們都可以使用同一個圖神經(jīng)網(wǎng)絡(luò)模型進行處理。 從?基礎(chǔ)研究到生產(chǎn)級機器學(xué)習(xí)模型 在學(xué)術(shù)研究中,生產(chǎn)級機器學(xué)習(xí)系統(tǒng)存在一個常常被忽視的巨大挑戰(zhàn),即同一模型在多次訓(xùn)練運行中會出現(xiàn)巨大的差異。雖然在很多學(xué)術(shù)研究中,細微的訓(xùn)練質(zhì)量差別可以簡單地作為 poor 初始化被丟棄,但數(shù)百萬用戶的細微不一致累加在一起就會產(chǎn)生極大的影響。 因此,在將該模型投入生產(chǎn)時,圖神經(jīng)網(wǎng)絡(luò)對訓(xùn)練中這種變化的魯棒性就成為了重中之重。研究者發(fā)現(xiàn),圖神經(jīng)網(wǎng)絡(luò)對訓(xùn)練過程中的變化特別敏感,造成這種不穩(wěn)定性的原因是訓(xùn)練中使用的圖結(jié)構(gòu)之間存在巨大差異。單批次圖可以涵蓋從兩節(jié)點小圖到 100 節(jié)點以上的大圖。 然而,在反復(fù)試錯之后,研究者在有監(jiān)督設(shè)置下采用了一種新型強化學(xué)習(xí)技術(shù),解決了以上問題。 在訓(xùn)練機器學(xué)習(xí)系統(tǒng)的過程中,系統(tǒng)的學(xué)習(xí)率決定了自身對新信息的「可塑性」。隨著時間推移,研究人員常常會降低模型的學(xué)習(xí)率,這是因為學(xué)習(xí)新東西和忘記已經(jīng)學(xué)得的重要特征之間存在著權(quán)衡,就像人類從兒童到成人的成長歷程一樣。 所以,在預(yù)定義訓(xùn)練階段之后,研究者首先采用一種指數(shù)衰減學(xué)習(xí)率計劃來穩(wěn)定參數(shù)。此外,研究者還探究和分析了以往研究中被證明有效的模型集成技術(shù),從而觀察是否可以減少訓(xùn)練運行中的模型差異。 最后,研究者發(fā)現(xiàn),最成功的解決方案是使用 MetaGradient 來動態(tài)調(diào)整訓(xùn)練期間的學(xué)習(xí)率,從而可以有效地使系統(tǒng)學(xué)得自身最優(yōu)的學(xué)習(xí)率計劃。通過在訓(xùn)練期間自動地調(diào)整學(xué)習(xí)率,該模型不僅實現(xiàn)了較以往更高的質(zhì)量,而且還學(xué)會了自動降低學(xué)習(xí)率。最終實現(xiàn)了更穩(wěn)定的結(jié)果,使得該新型架構(gòu)能夠應(yīng)用于生產(chǎn)。 通過自定義損失函數(shù)實現(xiàn)模型泛化 雖然建模系統(tǒng)的最終目標(biāo)是減少行程預(yù)估中的誤差,但是研究者發(fā)現(xiàn),利用多個損失函數(shù)(適當(dāng)加權(quán))的線性組合極大地提升了模型的泛化能力。具體而言,研究者利用模型權(quán)重的正則化因子、全局遍歷時間上的 L_2 和 L_1 損失、以及圖中每個節(jié)點的 Huber 和負對數(shù)似然(negative-log likelihood, NLL)損失,制定了一個多損失目標(biāo)。 通過結(jié)合這些損失,研究者能夠指導(dǎo)模型并避免訓(xùn)練數(shù)據(jù)集的過擬合。雖然對訓(xùn)練過程的質(zhì)量衡量標(biāo)準(zhǔn)并沒有變化,但是訓(xùn)練中出現(xiàn)的提升更直接地轉(zhuǎn)化到留出(held-out)測試集和端到端實驗中。 目前,研究者正在探究,在以減少行程估計誤差為指導(dǎo)指標(biāo)的情況下,MetaGradient 技術(shù)是否也可以用來改變訓(xùn)練過程中多成分損失函數(shù)的構(gòu)成。這項研究受到先前在強化學(xué)習(xí)中取得成功的 MetaGradient 的啟發(fā),并且早期實驗也顯示出了不錯的結(jié)果。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:圖神經(jīng)網(wǎng)絡(luò)讓預(yù)估到達準(zhǔn)確率提升50%,谷歌地圖實現(xiàn)新突破

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    谷歌地圖GPS定位

    谷歌地圖GPS定位:精準(zhǔn)導(dǎo)航背后的技術(shù)解析 谷歌地圖作為全球最受歡迎的地圖服務(wù)之一,其精準(zhǔn)的GPS定位功能為用戶提供了極大便利。本文將深入探
    的頭像 發(fā)表于 05-29 16:54 ?301次閱讀

    NVIDIA實現(xiàn)神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破性增強功能

    近日,NVIDIA 宣布了 NVIDIA RTX 神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破性增強功能。NVIDIA 與微軟合作,將在 4 月的 Microsoft DirectX 預(yù)覽版中增加神經(jīng)網(wǎng)絡(luò)著色技術(shù),讓開
    的頭像 發(fā)表于 04-07 11:33 ?439次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?655次閱讀

    BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)步驟詳解

    BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)步驟主要包括以下幾個階段:網(wǎng)絡(luò)初始化、前向傳播、誤差計算、反向傳播和權(quán)重更新。以下是對這些步驟的詳細解釋: 一、網(wǎng)絡(luò)初始化 確定網(wǎng)
    的頭像 發(fā)表于 02-12 15:50 ?633次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進行復(fù)雜的特征工程。 泛化能力強 : BP神經(jīng)網(wǎng)絡(luò)通過訓(xùn)練數(shù)據(jù)學(xué)習(xí)到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?907次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)由多個神經(jīng)元組成,神經(jīng)元之間通過
    的頭像 發(fā)表于 01-23 13:52 ?520次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1178次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實現(xiàn)工具和框架應(yīng)運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?664次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1854次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機器學(xué)習(xí)領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1122次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長期依賴信息。在處理序列數(shù)據(jù)時,如時間序列分析、自然語言處理等,LSTM因其能夠有效地捕捉時間序列中的長期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1562次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    分享幾個用FPGA實現(xiàn)的小型神經(jīng)網(wǎng)絡(luò)

    今天我們分享幾個用FPGA實現(xiàn)的小型神經(jīng)網(wǎng)絡(luò),側(cè)重應(yīng)用。
    的頭像 發(fā)表于 07-24 09:30 ?1868次閱讀
    分享幾個用FPGA<b class='flag-5'>實現(xiàn)</b>的小型<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    神經(jīng)網(wǎng)絡(luò)專用硬件實現(xiàn)的方法和技術(shù)

    神經(jīng)網(wǎng)絡(luò)專用硬件實現(xiàn)是人工智能領(lǐng)域的一個重要研究方向,旨在通過設(shè)計專門的硬件來加速神經(jīng)網(wǎng)絡(luò)的訓(xùn)練和推理過程,提高計算效率和能效比。以下將詳細介紹神經(jīng)網(wǎng)絡(luò)專用硬件
    的頭像 發(fā)表于 07-15 10:47 ?2313次閱讀
    主站蜘蛛池模板: 三级电影在线观看视频 | 一二三区乱码一区二区三区码 | 禁网站在线观看免费视频 | 五月婷婷激情网 | 亚洲www视频| 成人在线免费 | 女人被免费网站视频在线 | 婷婷综合激六月情网 | 奇米欧美 | a级黄视频 | 人人爱爱人人 | 一区二区网站 | 在线黄色大片 | 日韩一级影院 | 五月婷婷六月丁香综合 | 成人午夜影院在线观看 | 久久男人精品 | 噜噜嘿| 国产码一区二区三区 | 香蕉视频vip| 日本特黄特色大片免费看 | 免费观看的黄色网址 | 天堂最新版 | 免费午夜影片在线观看影院 | 国内一区二区三区精品视频 | 一级特黄a大片免费 | 欧美一级在线观看播放 | 在线免费国产 | 色www亚洲国产张柏芝 | 欧美激情啪啪 | 亚洲欧美成人在线 | 天天摸日日碰天天看免费 | 国产精品高清久久久久久久 | 开心激情小说 | 交在线观看网站视频 | 夜夜爱夜夜爽夜夜做夜夜欢 | 天天干天天色天天 | 久久影院午夜伦手机不四虎卡 | 男女交黄 | 日本丝瓜着色视频 | 婷婷5月天|