在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

KDD2020知識(shí)圖譜相關(guān)論文分享

深度學(xué)習(xí)自然語(yǔ)言處理 ? 來(lái)源:深度學(xué)習(xí)自然語(yǔ)言處理 ? 作者:深度學(xué)習(xí)自然語(yǔ)言 ? 2020-09-25 17:36 ? 次閱讀

論文專欄:KDD2020知識(shí)圖譜相關(guān)論文分享

論文解讀者:北郵 GAMMA Lab 博士生 閆博

題目:魯棒的跨語(yǔ)言知識(shí)圖譜實(shí)體對(duì)齊

會(huì)議:KDD 2020

論文地址:https://dl.acm.org/doi/pdf/10.1145/3394486.3403268

代碼地址:https://github.com/scpei/REA

推薦理由:這篇論文首次提出了跨語(yǔ)言實(shí)體對(duì)齊中的噪音問題,并提出了一種基于迭代訓(xùn)練的除噪算法,從而進(jìn)行魯棒的跨語(yǔ)言知識(shí)圖譜實(shí)體對(duì)齊。本工作對(duì)后續(xù)跨語(yǔ)言實(shí)體對(duì)齊的去噪研究具有重要的開創(chuàng)性意義。

跨語(yǔ)言實(shí)體對(duì)齊旨在將不同知識(shí)圖譜中語(yǔ)義相似的實(shí)體進(jìn)行關(guān)聯(lián),它是知識(shí)融合和知識(shí)圖譜連接必不可少的研究問題,現(xiàn)有方法只在有干凈標(biāo)簽數(shù)據(jù)的前提下,采用有監(jiān)督或半監(jiān)督的機(jī)器學(xué)習(xí)方法進(jìn)行了研究。但是,來(lái)自人類注釋的標(biāo)簽通常包含錯(cuò)誤,這可能在很大程度上影響對(duì)齊的效果。因此,本文旨在探索魯棒的實(shí)體對(duì)齊問題,提出的REA模型由兩個(gè)部分組成:噪聲檢測(cè)和基于噪聲感知的實(shí)體對(duì)齊。噪聲檢測(cè)是根據(jù)對(duì)抗訓(xùn)練原理設(shè)計(jì)的,基于噪聲感知的實(shí)體對(duì)齊利用圖神經(jīng)網(wǎng)絡(luò)對(duì)知識(shí)圖譜進(jìn)行建模。兩個(gè)部分迭代進(jìn)行訓(xùn)練,從而讓模型去利用干凈的實(shí)體對(duì)來(lái)進(jìn)行節(jié)點(diǎn)的表示學(xué)習(xí)。在現(xiàn)實(shí)世界的幾個(gè)數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果證明了提出的方法的有效性,并且在涉及噪聲的情況下,此模型始終優(yōu)于最新方法,并且在準(zhǔn)確度方面有顯著提高。

1 引言

現(xiàn)有方法在進(jìn)行跨語(yǔ)言實(shí)體對(duì)齊時(shí)沒有考慮噪音問題,而這些噪音可能會(huì)損害模型的效果。如圖1所示,(a)中的兩個(gè)不同語(yǔ)言的知識(shí)圖譜存在實(shí)體對(duì)噪音(虛線表示的實(shí)體對(duì)1-4),(b)是理想狀況下節(jié)點(diǎn)在特征空間中的表示,可以看出不同語(yǔ)言知識(shí)圖譜中具有相似語(yǔ)義的實(shí)體在特征空間中也相近。(c)是利用含有噪音的訓(xùn)練數(shù)據(jù)得到的節(jié)點(diǎn)特征表示,由于噪音的存在,節(jié)點(diǎn)的表示存在了一定的偏差。我們希望跨語(yǔ)言實(shí)體對(duì)齊是魯棒性的,即使訓(xùn)練數(shù)據(jù)中存在噪音,模型也能盡量減少噪音的消極影響,得到如圖(b)中的表示。為了克服現(xiàn)有的跨語(yǔ)言實(shí)體對(duì)齊方法在處理帶噪標(biāo)簽實(shí)體對(duì)時(shí)存在的局限性,本文探討了如何將噪聲檢測(cè)與實(shí)體對(duì)齊模型結(jié)合起來(lái),以及如何共同訓(xùn)練它們以對(duì)齊不同語(yǔ)言知識(shí)圖譜中的實(shí)體。

圖1噪音對(duì)跨語(yǔ)言實(shí)體對(duì)齊模型效果的影響示意圖

問題定義

噪音檢測(cè)和魯棒性圖表示學(xué)習(xí):在一個(gè)存在噪音的場(chǎng)景下,代表所有的用于訓(xùn)練的實(shí)體對(duì)(可能包含噪音),代表中確定的干凈的實(shí)體對(duì),代表不確定是否含有噪音的實(shí)體對(duì)。魯棒性的跨語(yǔ)言實(shí)體對(duì)齊模型利用給定的和,去對(duì)齊知識(shí)圖譜中的剩余實(shí)體,并且能自動(dòng)發(fā)現(xiàn)中的噪音實(shí)體對(duì)。

這個(gè)問題是不平凡的,主要存在兩方面的挑戰(zhàn):(1)沒有明顯的噪音知識(shí)加以利用,即我們不知道訓(xùn)練數(shù)據(jù)中哪些是噪音數(shù)據(jù),所以傳統(tǒng)的監(jiān)督學(xué)習(xí)方法無(wú)法使用,提出的模型需要以一種無(wú)監(jiān)督的方式自動(dòng)檢測(cè)出訓(xùn)練數(shù)據(jù)中的噪音實(shí)體對(duì)。(2)提出一個(gè)統(tǒng)一的模型。此模型要既能檢測(cè)出訓(xùn)練數(shù)據(jù)中的噪音,還能進(jìn)行有效的跨語(yǔ)言實(shí)體對(duì)齊。

2 方法

魯棒性的跨語(yǔ)言實(shí)體對(duì)齊模型(REA)包括兩個(gè)部分。一是基于噪音感知的實(shí)體對(duì)齊模型,這一部分主要是利用圖神經(jīng)網(wǎng)絡(luò)來(lái)對(duì)不同語(yǔ)言的兩個(gè)知識(shí)圖譜進(jìn)行統(tǒng)一建模,學(xué)習(xí)節(jié)點(diǎn)的表示,訓(xùn)練時(shí)只使用。二是噪音檢測(cè)模塊,作者采用了基于對(duì)抗訓(xùn)練的方式,利用生成對(duì)抗網(wǎng)絡(luò)(GAN)來(lái)檢測(cè)噪音。噪音實(shí)體對(duì)生成器接受干凈實(shí)體對(duì)輸入,然后進(jìn)行采樣生成噪音實(shí)體對(duì);噪音判別器以干凈實(shí)體對(duì)和噪音實(shí)體對(duì)為輸入,訓(xùn)練一個(gè)能判別噪音的模型,同時(shí)對(duì)輸入的實(shí)體對(duì)產(chǎn)生一個(gè)信任分?jǐn)?shù),將信任分?jǐn)?shù)大于閾值的實(shí)體對(duì)加入,用于實(shí)體對(duì)齊模塊節(jié)點(diǎn)的表示學(xué)習(xí)。上述兩個(gè)模塊迭代進(jìn)行訓(xùn)練,直到收斂。下面詳細(xì)介紹這兩個(gè)模塊。

圖2REA模型示意圖

2.1 基于噪音感知的實(shí)體對(duì)齊模型

這一部分主要是對(duì)知識(shí)圖譜節(jié)點(diǎn)的表示學(xué)習(xí)。對(duì)于知識(shí)圖譜中任意的三元組,定義從傳到的信息為:

具體為:

其中和是節(jié)點(diǎn)一階鄰居的個(gè)數(shù)。最終經(jīng)過(guò)圖的信息傳播后節(jié)點(diǎn)的表示為:

損失函數(shù)采用基于間隔的排序損失(margin-based ranking objective):

這里代表信任分?jǐn)?shù),又噪音檢測(cè)模塊輸出,即當(dāng)實(shí)體對(duì)的信任分?jǐn)?shù)超過(guò)閾值時(shí),此實(shí)體對(duì)才被認(rèn)為是正確的,才會(huì)被加入訓(xùn)練集。代表margin loss,是一個(gè)超參數(shù)。是一個(gè)衡量實(shí)體對(duì)相似性的函數(shù),由能量函數(shù)定義:

負(fù)樣本對(duì)由隨機(jī)替換頭或尾實(shí)體得到。

2.2 噪音檢測(cè)模塊

噪音檢測(cè)模塊分為噪音對(duì)生成器和噪音對(duì)判別器,由生成對(duì)抗網(wǎng)絡(luò)實(shí)現(xiàn)。與傳統(tǒng)的生成對(duì)抗網(wǎng)絡(luò)不同的一點(diǎn)是,噪音對(duì)生成器不是由模型訓(xùn)練產(chǎn)生噪音對(duì),而是由采樣生成。噪音對(duì)生成器利用實(shí)體對(duì)齊模塊生成的真實(shí)實(shí)體對(duì)表示作為輸入,然后通過(guò)替換掉頭或尾實(shí)體采樣得到噪音實(shí)體對(duì)。噪音實(shí)體對(duì)的采樣概率如下式所示:

其中是一個(gè)簡(jiǎn)單的兩層神經(jīng)網(wǎng)絡(luò),衡量了兩個(gè)實(shí)體的語(yǔ)義相似性,兩個(gè)實(shí)體越相似,越不容易被采樣到,這是自然的,因?yàn)樯善鞅緛?lái)就是用來(lái)生成噪音的。為了減少采樣空間過(guò)大帶來(lái)的計(jì)算量代價(jià),采樣只在負(fù)樣本空間的一個(gè)子空間進(jìn)行:

此外,由于采樣過(guò)程是無(wú)法利用傳統(tǒng)的基于梯度下降方法求參數(shù),所以本文采用了基于強(qiáng)化學(xué)習(xí)的參數(shù)求解算法,具體來(lái)說(shuō):

對(duì)所有負(fù)樣本的梯度求解近似為對(duì)k個(gè)采樣的負(fù)樣本的梯度求解,可以看作當(dāng)前的狀態(tài),可以看作策略,看作是動(dòng)作,代表獎(jiǎng)勵(lì)。

噪音判別器以實(shí)體對(duì)作為輸入,輸出實(shí)體對(duì)為真實(shí)實(shí)體對(duì)的概率:

越大,實(shí)體對(duì)越有可能為真實(shí)實(shí)體對(duì),定義實(shí)體對(duì)的信任得分為:

信任得分為1的實(shí)體對(duì)將返回給實(shí)體對(duì)齊模型,繼續(xù)訓(xùn)練。

2.3 算法流程

REA模型采用的是一個(gè)迭代的算法,在每次迭代中,算法依次進(jìn)行三部分的參數(shù)訓(xùn)練。首先是利用干凈的實(shí)體對(duì)進(jìn)行節(jié)點(diǎn)的表示學(xué)習(xí)(4-7);然后對(duì)噪音實(shí)體對(duì)判別器進(jìn)行訓(xùn)練(8-12);最后對(duì)噪音實(shí)體對(duì)生成器進(jìn)行訓(xùn)練(13-17)。一次迭代完成后,更新中實(shí)體對(duì)的信任得分,將信任得分等于1的實(shí)體對(duì)加入。具體算法如下所示。

3 實(shí)驗(yàn)

作者在兩個(gè)數(shù)據(jù)集DBP15K和DWY100K包含的5個(gè)跨語(yǔ)言知識(shí)圖譜上進(jìn)行了實(shí)驗(yàn)。采用Hits@1,Hits@5,MRR做為評(píng)價(jià)指標(biāo)。實(shí)驗(yàn)結(jié)果如下圖所示,其中REA-KE是去掉噪音檢測(cè)模塊得到的結(jié)果。

本模型中,噪音實(shí)體對(duì)判別器的檢測(cè)能力至關(guān)重要,所以作者也測(cè)試了噪音判別器對(duì)噪音數(shù)據(jù)的檢測(cè)能力。如下所示,噪音數(shù)據(jù)的比例為20%和40%時(shí),判別器都有一個(gè)較好的檢測(cè)噪音的效果。但是由于知識(shí)圖譜的不完整性,仍有大量真實(shí)實(shí)體對(duì)被檢測(cè)為噪音。

當(dāng)干凈的實(shí)體對(duì)數(shù)據(jù)()增加的時(shí)候,模型效果也會(huì)變好;而當(dāng)噪音數(shù)據(jù)增加的時(shí)候,模型效果就會(huì)降低。而REA在有噪音的情況下表現(xiàn)是最好的。這也說(shuō)明了噪音對(duì)跨語(yǔ)言實(shí)體對(duì)齊有很大的影響,REA能有效地處理噪音問題。如圖3和圖4所示。

圖3干凈實(shí)體對(duì)的數(shù)量對(duì)實(shí)驗(yàn)結(jié)果的影響

圖4噪音實(shí)體對(duì)的數(shù)量對(duì)實(shí)驗(yàn)結(jié)果的影響

最后,作者還測(cè)試了不同類型的噪音對(duì)實(shí)驗(yàn)結(jié)果的影響。噪音的不同類型由它們采樣時(shí)離真實(shí)實(shí)體的距離所定。圖5分別測(cè)試了噪音實(shí)體離真實(shí)實(shí)體距離為10,50,100和全局的情形下模型的效果。

圖5噪音類型對(duì)實(shí)驗(yàn)結(jié)果的影響

從圖5可以看出,噪音離真實(shí)實(shí)體越遠(yuǎn),即與真實(shí)實(shí)體的語(yǔ)義差別越大時(shí),模型效果降低越多。當(dāng)距離大于50后,模型效果幾乎不再變化,這也說(shuō)明了離真實(shí)實(shí)體大于一定距離時(shí),噪音對(duì)模型的負(fù)面效果趨于穩(wěn)定。而當(dāng)噪音實(shí)體離真實(shí)數(shù)據(jù)越近,模型效果越好,這是顯而易見的,因?yàn)檫@樣越接近干凈的標(biāo)注數(shù)據(jù)。在所有的4種情況下,REA均取得了最好的效果。

4 總結(jié)

在標(biāo)注跨語(yǔ)言實(shí)體對(duì)齊語(yǔ)料過(guò)程中不可避免地會(huì)引入噪音。現(xiàn)有方法沒有考慮噪音問題,損害了實(shí)體對(duì)齊的效果。針對(duì)這一問題,本文提出了魯棒性的跨語(yǔ)言實(shí)體對(duì)齊模型REA。REA通過(guò)一種迭代訓(xùn)練的方式,在每一輪訓(xùn)練過(guò)程中,通過(guò)圖神經(jīng)網(wǎng)絡(luò)建模知識(shí)圖譜中的實(shí)體對(duì),得到噪聲感知的實(shí)體對(duì)齊模塊,然乎利用生成對(duì)抗網(wǎng)絡(luò)來(lái)生成噪音實(shí)體對(duì)并訓(xùn)練一個(gè)噪音判別器,噪音判別器識(shí)別出干凈的實(shí)體對(duì)加入訓(xùn)練集繼續(xù)訓(xùn)練。大量的實(shí)驗(yàn)證明了REA在魯棒性跨語(yǔ)言實(shí)體對(duì)齊任務(wù)上的有效性。

責(zé)任編輯:xj

原文標(biāo)題:【KDD20】魯棒的跨語(yǔ)言知識(shí)圖譜實(shí)體對(duì)齊

文章出處:【微信公眾號(hào):深度學(xué)習(xí)自然語(yǔ)言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 自然語(yǔ)言
    +關(guān)注

    關(guān)注

    1

    文章

    289

    瀏覽量

    13382
  • 知識(shí)圖譜
    +關(guān)注

    關(guān)注

    2

    文章

    132

    瀏覽量

    7725

原文標(biāo)題:【KDD20】魯棒的跨語(yǔ)言知識(shí)圖譜實(shí)體對(duì)齊

文章出處:【微信號(hào):zenRRan,微信公眾號(hào):深度學(xué)習(xí)自然語(yǔ)言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    微軟發(fā)布《GraphRAG實(shí)踐應(yīng)用白皮書》助力開發(fā)者

    近日,微軟針對(duì)開發(fā)者群體,重磅推出了《GraphRAG實(shí)踐應(yīng)用白皮書》。該白皮書全面而深入地涵蓋了知識(shí)圖譜的核心內(nèi)容,為開發(fā)者和企業(yè)提供了寶貴的指導(dǎo)和啟示。 從知識(shí)圖譜的基礎(chǔ)概念出發(fā),白皮書詳細(xì)闡述
    的頭像 發(fā)表于 01-13 16:11 ?289次閱讀

    利智方:驅(qū)動(dòng)企業(yè)知識(shí)管理與AI創(chuàng)新加速的平臺(tái)

    利智方致力于深度整合企業(yè)知識(shí)資產(chǎn),全面打通知識(shí)生命周期的各個(gè)環(huán)節(jié)。通過(guò)構(gòu)建強(qiáng)大的知識(shí)庫(kù)和精準(zhǔn)的知識(shí)圖譜,支持快速定制和部署各類AI應(yīng)用,為企業(yè)創(chuàng)新發(fā)展提供堅(jiān)實(shí)的技術(shù)支撐。可多維度提升企
    的頭像 發(fā)表于 12-30 11:07 ?315次閱讀

    傳音旗下人工智能項(xiàng)目榮獲2024年“上海產(chǎn)學(xué)研合作優(yōu)秀項(xiàng)目獎(jiǎng)”一等獎(jiǎng)

    和華東師范大學(xué)聯(lián)合申報(bào)的“跨語(yǔ)言知識(shí)圖譜構(gòu)建與推理技術(shù)研究及應(yīng)用”項(xiàng)目憑借創(chuàng)新性和技術(shù)先進(jìn)性榮獲一等獎(jiǎng)。該項(xiàng)目成功突破了多形態(tài)信息抽取技術(shù)、跨語(yǔ)言知識(shí)圖譜對(duì)齊技術(shù)和知識(shí)問答對(duì)
    的頭像 發(fā)表于 12-16 17:04 ?364次閱讀
    傳音旗下人工智能項(xiàng)目榮獲2024年“上海產(chǎn)學(xué)研合作優(yōu)秀項(xiàng)目獎(jiǎng)”一等獎(jiǎng)

    傳音旗下小語(yǔ)種AI技術(shù)榮獲2024年“上海產(chǎn)學(xué)研合作優(yōu)秀項(xiàng)目獎(jiǎng)”一等獎(jiǎng)

    和華東師范大學(xué)聯(lián)合申報(bào)的“跨語(yǔ)言知識(shí)圖譜構(gòu)建與推理技術(shù)研究及應(yīng)用”項(xiàng)目憑借創(chuàng)新性和技術(shù)先進(jìn)性榮獲一等獎(jiǎng)。 該項(xiàng)目成功突破了多形態(tài)信息抽取技術(shù)、跨語(yǔ)言知識(shí)圖譜對(duì)齊技術(shù)和知識(shí)問答對(duì)話技術(shù),開發(fā)了全球首個(gè)針對(duì)非洲市場(chǎng)定制手機(jī)智能助手和
    的頭像 發(fā)表于 12-16 16:21 ?379次閱讀
    傳音旗下小語(yǔ)種AI技術(shù)榮獲2024年“上海產(chǎn)學(xué)研合作優(yōu)秀項(xiàng)目獎(jiǎng)”一等獎(jiǎng)

    光譜看譜鏡分析圖譜

    火電廠材質(zhì)分析看譜鏡圖譜
    發(fā)表于 12-06 15:02 ?0次下載

    接口測(cè)試?yán)碚摗⒁蓡柺珍浥c擴(kuò)展相關(guān)知識(shí)點(diǎn)

    本文章使用王者榮耀游戲接口、企業(yè)微信接口的展示結(jié)合理論知識(shí),講解什么是接口測(cè)試、接口測(cè)試?yán)碚摗⒁蓡柺珍浥c擴(kuò)展相關(guān)知識(shí)點(diǎn)的知識(shí)學(xué)院,快來(lái)一起看看吧~
    的頭像 發(fā)表于 11-15 09:12 ?365次閱讀
    接口測(cè)試?yán)碚摗⒁蓡柺珍浥c擴(kuò)展<b class='flag-5'>相關(guān)</b><b class='flag-5'>知識(shí)</b>點(diǎn)

    58大新質(zhì)生產(chǎn)力產(chǎn)業(yè)鏈圖譜

    大躍升 的先進(jìn)生產(chǎn)力。 58大新質(zhì)生產(chǎn)力產(chǎn)業(yè)鏈圖譜 01 元宇宙產(chǎn)業(yè)圖譜 02 算力產(chǎn)業(yè)圖譜 03 數(shù)商產(chǎn)業(yè)圖譜 04 人形機(jī)器人產(chǎn)業(yè)圖譜
    的頭像 發(fā)表于 11-09 10:16 ?406次閱讀
    58大新質(zhì)生產(chǎn)力產(chǎn)業(yè)鏈<b class='flag-5'>圖譜</b>

    三星自主研發(fā)知識(shí)圖譜技術(shù),強(qiáng)化Galaxy AI用戶體驗(yàn)與數(shù)據(jù)安全

    據(jù)外媒11月7日?qǐng)?bào)道,三星電子全球AI中心總監(jiān)Kim Dae-hyun近日透露,公司正致力于自主研發(fā)知識(shí)圖譜技術(shù),旨在進(jìn)一步優(yōu)化Galaxy AI的功能,提升其易用性,并加強(qiáng)用戶數(shù)據(jù)的隱私保護(hù)。
    的頭像 發(fā)表于 11-07 15:19 ?707次閱讀

    連接器相關(guān)基礎(chǔ)知識(shí)大講解

    最近很多讀者想要補(bǔ)補(bǔ)連接器相關(guān)知識(shí),今天小編就和大家來(lái)探討下連接器的相關(guān)知識(shí)。 以下和大家來(lái)了連接器基礎(chǔ)知識(shí),將從六個(gè)方面和大家分享,想了
    的頭像 發(fā)表于 11-01 11:03 ?458次閱讀

    三星電子成功收購(gòu)英國(guó)初創(chuàng)公司,致力開發(fā)AI核心技術(shù)

    7月18日,三星電子正式對(duì)外宣布了一項(xiàng)重要戰(zhàn)略舉措——成功收購(gòu)英國(guó)新興科技企業(yè)Oxford Semantic Technologies。這家初創(chuàng)公司成立于2017年,專注于前沿的知識(shí)圖譜技術(shù)領(lǐng)域,致力于開發(fā)能夠賦能更復(fù)雜AI應(yīng)用的核心技術(shù)。
    的頭像 發(fā)表于 07-18 15:40 ?561次閱讀

    三星電子將收購(gòu)英國(guó)知識(shí)圖譜技術(shù)初創(chuàng)企業(yè)

    在人工智能技術(shù)日新月異的今天,三星電子公司再次展現(xiàn)了其前瞻性的戰(zhàn)略布局與技術(shù)創(chuàng)新實(shí)力。近日,三星正式宣布完成了對(duì)英國(guó)領(lǐng)先的人工智能(AI)與知識(shí)圖譜技術(shù)初創(chuàng)企業(yè)Oxford Semantic Technologies的收購(gòu),此舉標(biāo)志著三星在提升設(shè)備端AI能力、深化個(gè)性化用戶體驗(yàn)方面邁出了重要一步。
    的頭像 發(fā)表于 07-18 14:46 ?562次閱讀

    知識(shí)圖譜與大模型之間的關(guān)系

    在人工智能的廣闊領(lǐng)域中,知識(shí)圖譜與大模型是兩個(gè)至關(guān)重要的概念,它們各自擁有獨(dú)特的優(yōu)勢(shì)和應(yīng)用場(chǎng)景,同時(shí)又相互補(bǔ)充,共同推動(dòng)著人工智能技術(shù)的發(fā)展。本文將從定義、特點(diǎn)、應(yīng)用及相互關(guān)系等方面深入探討知識(shí)圖譜與大模型之間的關(guān)系。
    的頭像 發(fā)表于 07-10 11:39 ?1168次閱讀

    Al大模型機(jī)器人

    )大模型AI機(jī)器人采用中英文雙語(yǔ)應(yīng)用,目前的知識(shí)圖譜包括了金航標(biāo)和薩科微所有的產(chǎn)品內(nèi)容、應(yīng)用場(chǎng)景、產(chǎn)品的家屬參數(shù)等,熱賣的型號(hào)S8050、TL431、SS8550、FR107、LM321、ZMM5V6
    發(fā)表于 07-05 08:52

    利用知識(shí)圖譜與Llama-Index技術(shù)構(gòu)建大模型驅(qū)動(dòng)的RAG系統(tǒng)(下)

    對(duì)于語(yǔ)言模型(LLM)幻覺,知識(shí)圖譜被證明優(yōu)于向量數(shù)據(jù)庫(kù)。知識(shí)圖譜提供更準(zhǔn)確、多樣化、有趣、邏輯和一致的信息,減少了LLM中出現(xiàn)幻覺的可能性。
    的頭像 發(fā)表于 02-22 14:13 ?1275次閱讀
    利用<b class='flag-5'>知識(shí)圖譜</b>與Llama-Index技術(shù)構(gòu)建大模型驅(qū)動(dòng)的RAG系統(tǒng)(下)

    利用知識(shí)圖譜與Llama-Index技術(shù)構(gòu)建大模型驅(qū)動(dòng)的RAG系統(tǒng)(上)

    向量數(shù)據(jù)庫(kù)是一組高維向量的集合,用于表示實(shí)體或概念,例如單詞、短語(yǔ)或文檔。向量數(shù)據(jù)庫(kù)可以根據(jù)實(shí)體或概念的向量表示來(lái)度量它們之間的相似性或關(guān)聯(lián)性。
    的頭像 發(fā)表于 02-22 14:07 ?1207次閱讀
    利用<b class='flag-5'>知識(shí)圖譜</b>與Llama-Index技術(shù)構(gòu)建大模型驅(qū)動(dòng)的RAG系統(tǒng)(上)
    主站蜘蛛池模板: 99久久婷婷国产综合精品电影 | 久久99热精品这里久久精品 | 欧美性色欧美a在线观看 | 美女涩涩网站 | 中文字幕一区二区三区在线播放 | 曰韩一级 | 99久久精品免费观看国产 | 美女扒开下面让男人捅 | 欧美xxxx色视频在线观看 | 色天天综合色天天碰 | 被cao到合不拢腿腐男男 | 台湾一级毛片 | 扒开末成年粉嫩的流白浆视频 | 在线成人免费观看国产精品 | 四虎影片国产精品8848 | 日韩草逼 | 嫩草影院国产 | 狠狠色噜噜狠狠狠狠米奇7777 | 久久精品免费视频观看 | 韩漫免费网站无遮挡羞羞漫画 | 国产经典三级在线 | 成人国产精品高清在线观看 | 快色视频免费观看 | 激情五月婷婷在线 | 国产黄色视屏 | 精品日韩一区二区三区 | 国产片一级特黄aa的大片 | 亚洲三级网 | 韩国精品视频 | 免费在线视频播放 | 伊人久久大香线蕉电影院 | 新激情五月 | 一级a级国产不卡毛片 | 上海一级毛片 | 在线免费看一级片 | 国产精品波多野结衣 | 欧美天天搞| 香蕉久久夜色精品国产2020 | 成人一级毛片 | 亚洲爽爽网站 | 久操免费在线视频 |