在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

介紹10個常見機器學(xué)習(xí)案例

深度學(xué)習(xí)自然語言處理 ? 來源:機器之心 ? 作者:Jason Brownlee ? 2020-10-10 10:55 ? 次閱讀

本文介紹了 10 個常見機器學(xué)習(xí)案例,這些案例需要用線性代數(shù)才能得到最好的理解。

線性代數(shù)是數(shù)學(xué)的分支學(xué)科,涉及矢量、矩陣和線性變換。

它是機器學(xué)習(xí)的重要基礎(chǔ),從描述算法操作的符號到代碼中算法的實現(xiàn),都屬于該學(xué)科的研究范圍。

雖然線性代數(shù)是機器學(xué)習(xí)領(lǐng)域不可或缺的一部分,但二者的緊密關(guān)系往往無法解釋,或只能用抽象概念(如向量空間或特定矩陣運算)解釋。

閱讀這篇文章后,你將會了解到:

如何在處理數(shù)據(jù)時使用線性代數(shù)結(jié)構(gòu),如表格數(shù)據(jù)集和圖像。

數(shù)據(jù)準(zhǔn)備過程中用到的線性代數(shù)概念,例如 one-hot 編碼和降維。

深度學(xué)習(xí)、自然語言處理和推薦系統(tǒng)等子領(lǐng)域中線性代數(shù)符號和方法的深入使用。

讓我們開始吧。

這 10 個機器學(xué)習(xí)案例分別是:

1. Dataset and Data Files 數(shù)據(jù)集和數(shù)據(jù)文件2. Images and Photographs 圖像和照片3. One-Hot Encoding one-hot 編碼4. Linear Regression 線性回歸5. Regularization 正則化6. Principal Component Analysis 主成分分析7. Singular-Value Decomposition 奇異值分解8. Latent Semantic Analysis 潛在語義分析9. Recommender Systems 推薦系統(tǒng)10. Deep Learning 深度學(xué)習(xí)

1. 數(shù)據(jù)集和數(shù)據(jù)文件

在機器學(xué)習(xí)中,你可以在數(shù)據(jù)集上擬合一個模型。

這是表格式的一組數(shù)字,其中每行代表一組觀察值,每列代表觀測的一個特征。

例如,下面這組數(shù)據(jù)是鳶尾花數(shù)據(jù)集的一部分

數(shù)據(jù)集:http://archive.ics.uci.edu/ml/datasets/Iris

5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,Iris-setosa 5.0,3.6,1.4,0.2,Iris-setosa

這些數(shù)據(jù)實際上是一個矩陣:線性代數(shù)中的一個關(guān)鍵數(shù)據(jù)結(jié)構(gòu)。

接下來,將數(shù)據(jù)分解為輸入數(shù)據(jù)和輸出數(shù)據(jù),來擬合一個監(jiān)督機器學(xué)習(xí)模型(如測量值和花卉品種),得到矩陣(X)和矢量(y)。矢量是線性代數(shù)中的另一個關(guān)鍵數(shù)據(jù)結(jié)構(gòu)。

每行長度相同,即每行的數(shù)據(jù)個數(shù)相同,因此我們可以說數(shù)據(jù)是矢量化的。這些行數(shù)據(jù)可以一次性或成批地提供給模型,并且可以預(yù)先配置模型,以得到固定寬度的行數(shù)據(jù)。

2. 圖像和照片

也許你更習(xí)慣于在計算機視覺應(yīng)用中處理圖像或照片。

你使用的每個圖像本身都是一個固定寬度和高度的表格結(jié)構(gòu),每個單元格有用于表示黑白圖像的 1 個像素值或表示彩色圖像的 3 個像素值。

照片也是線性代數(shù)矩陣的一種。

與圖像相關(guān)的操作,如裁剪、縮放、剪切等,都是使用線性代數(shù)的符號和運算來描述的。

3. one-hot 編碼

有時機器學(xué)習(xí)中要用到分類數(shù)據(jù)。

可能是用于解決分類問題的類別標(biāo)簽,也可能是分類輸入變量。

對分類變量進行編碼以使它們更易于使用并通過某些技術(shù)進行學(xué)習(xí)是很常見的。one-hot 編碼是一種常見的分類變量編碼。

one-hot 編碼可以理解為:創(chuàng)建一個表格,用列表示每個類別,用行表示數(shù)據(jù)集中每個例子。在列中為給定行的分類值添加一個檢查或「1」值,并將「0」值添加到所有其他列。

例如,共計 3 行的顏色變量:

red green blue 。..

這些變量可能被編碼為:

red, green, blue 1, 0, 0 0, 1, 0 0, 0, 1 。..

每一行都被編碼為一個二進制矢量,一個被賦予「0」或「1」值的矢量。這是一個稀疏表征的例子,線性代數(shù)的一個完整子域。

4. 線性回歸

線性回歸是一種用于描述變量之間關(guān)系的統(tǒng)計學(xué)傳統(tǒng)方法。

該方法通常在機器學(xué)習(xí)中用于預(yù)測較簡單的回歸問題的數(shù)值。

描述和解決線性回歸問題有很多種方法,即找到一組系數(shù),用這些系數(shù)與每個輸入變量相乘并將結(jié)果相加,得出最佳的輸出變量預(yù)測。

如果您使用過機器學(xué)習(xí)工具或機器學(xué)習(xí)庫,解決線性回歸問題的最常用方法是通過最小二乘優(yōu)化,這一方法是使用線性回歸的矩陣分解方法解決的(例如 LU 分解或奇異值分解)。

即使是線性回歸方程的常用總結(jié)方法也使用線性代數(shù)符號:

y = A 。 b

其中,y 是輸出變量,A 是數(shù)據(jù)集,b 是模型系數(shù)。

5. 正則化

在應(yīng)用機器學(xué)習(xí)時,我們往往尋求最簡單可行的模型來發(fā)揮解決問題的最佳技能。

較簡單的模型通常更擅長從具體示例泛化到未見過的數(shù)據(jù)。

在涉及系數(shù)的許多方法中,例如回歸方法和人工神經(jīng)網(wǎng)絡(luò),較簡單的模型通常具有較小的系數(shù)值。

一種常用于模型在數(shù)據(jù)擬合時盡量減小系數(shù)值的技術(shù)稱為正則化,常見的實現(xiàn)包括正則化的 L2 和 L1 形式。

這兩種正則化形式實際上是系數(shù)矢量的大小或長度的度量,是直接脫胎于名為矢量范數(shù)的線性代數(shù)方法。

6. 主成分分析

通常,數(shù)據(jù)集有許多列,列數(shù)可能達(dá)到數(shù)十、數(shù)百、數(shù)千或更多。

對具有許多特征的數(shù)據(jù)進行建模具有一定的挑戰(zhàn)性。而且,從包含不相關(guān)特征的數(shù)據(jù)構(gòu)建的模型通常不如用最相關(guān)的數(shù)據(jù)訓(xùn)練的模型。

我們很難知道數(shù)據(jù)的哪些特征是相關(guān)的,而哪些特征又不相關(guān)。

自動減少數(shù)據(jù)集列數(shù)的方法稱為降維,其中也許最流行的方法是主成分分析法(簡稱 PCA)。

該方法在機器學(xué)習(xí)中,為可視化和模型創(chuàng)建高維數(shù)據(jù)的投影。

PCA 方法的核心是線性代數(shù)的矩陣分解方法,可能會用到特征分解,更廣義的實現(xiàn)可以使用奇異值分解(SVD)。

7. 奇異值分解

另一種流行的降維方法是奇異值分解方法,簡稱 SVD。

如上所述,正如該方法名稱所示,它是源自線性代數(shù)領(lǐng)域的矩陣分解方法。

該方法在線性代數(shù)中有廣泛的用途,可直接應(yīng)用于特征選擇、可視化、降噪等方面。

在機器學(xué)習(xí)中我們會看到以下兩個使用 SVD 的情況。

8. 潛在語義分析

在用于處理文本數(shù)據(jù)的機器學(xué)習(xí)子領(lǐng)域(稱為自然語言處理),通常將文檔表示為詞出現(xiàn)的大矩陣。

例如,矩陣的列可以是詞匯表中的已知詞,行可以是文本的句子、段落、頁面或文檔,矩陣中的單元格標(biāo)記為單詞出現(xiàn)的次數(shù)或頻率。

這是文本的稀疏矩陣表示。矩陣分解方法(如奇異值分解)可以應(yīng)用于此稀疏矩陣,該分解方法可以提煉出矩陣表示中相關(guān)性最強的部分。以這種方式處理的文檔比較容易用來比較、查詢,并作為監(jiān)督機器學(xué)習(xí)模型的基礎(chǔ)。

這種形式的數(shù)據(jù)準(zhǔn)備稱為潛在語義分析(簡稱 LSA),也稱為潛在語義索引(LSI)。

9. 推薦系統(tǒng)

涉及產(chǎn)品推薦的預(yù)測建模問題被稱為推薦系統(tǒng),這是機器學(xué)習(xí)的一個子領(lǐng)域。

例如,基于你在亞馬遜上的購買記錄和與你類似的客戶的購買記錄向你推薦書籍,或根據(jù)你或與你相似的用戶在 Netflix 上的觀看歷史向你推薦電影或電視節(jié)目。

推薦系統(tǒng)的開發(fā)主要涉及線性代數(shù)方法。一個簡單的例子就是使用歐式距離或點積之類的距離度量來計算稀疏顧客行為向量之間的相似度。

像奇異值分解這樣的矩陣分解方法在推薦系統(tǒng)中被廣泛使用,以提取項目和用戶數(shù)據(jù)的有用部分,以備查詢、檢索及比較。

10. 深度學(xué)習(xí)

人工神經(jīng)網(wǎng)絡(luò)是一種非線性機器學(xué)習(xí)算法,它受大腦中信息處理元素的啟發(fā),其有效性已經(jīng)在一系列問題中得到驗證,其中最重要的是預(yù)測建模。

深度學(xué)習(xí)是近期出現(xiàn)的、使用最新方法和更快硬件的人工神經(jīng)網(wǎng)絡(luò)的復(fù)興,這一方法使得在非常大的數(shù)據(jù)集上開發(fā)和訓(xùn)練更大更深的(更多層)網(wǎng)絡(luò)成為可能。深度學(xué)習(xí)方法通常會在機器翻譯、照片字幕、語音識別等一系列具有挑戰(zhàn)性的領(lǐng)域取得最新成果。

神經(jīng)網(wǎng)絡(luò)的執(zhí)行涉及線性代數(shù)數(shù)據(jù)結(jié)構(gòu)的相乘和相加。如果擴展到多個維度,深度學(xué)習(xí)方法可以處理向量、矩陣,甚至輸入和系數(shù)的張量,此處的張量是一個兩維以上的矩陣。

線性代數(shù)是描述深度學(xué)習(xí)方法的核心,它通過矩陣表示法來實現(xiàn)深度學(xué)習(xí)方法,例如 Google 的 TensorFlow Python 庫,其名稱中包含「tensor」一詞。

責(zé)任編輯:lq
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:【初學(xué)者】10個例子帶你了解機器學(xué)習(xí)中的線性代數(shù)

文章出處:【微信號:zenRRan,微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    嵌入式機器學(xué)習(xí)的應(yīng)用特性與軟件開發(fā)環(huán)境

    設(shè)備和智能傳感器)上,這些設(shè)備通常具有有限的計算能力、存儲空間和功耗。本文將您介紹嵌入式機器學(xué)習(xí)的應(yīng)用特性,以及常見機器
    的頭像 發(fā)表于 01-25 17:05 ?174次閱讀
    嵌入式<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>的應(yīng)用特性與軟件開發(fā)環(huán)境

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學(xué)習(xí) AI,機器學(xué)習(xí)算法

    前言 由于本人最近在學(xué)習(xí)一些機器算法,AI 算法的知識,需要搭建一學(xué)習(xí)環(huán)境,所以就在最近購買的華為云 Flexus X 實例上安裝了學(xué)習(xí)環(huán)
    的頭像 發(fā)表于 01-02 13:43 ?152次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學(xué)習(xí)</b> AI,<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>算法

    傳統(tǒng)機器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹機器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多
    的頭像 發(fā)表于 12-30 09:16 ?398次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    zeta在機器學(xué)習(xí)中的應(yīng)用 zeta的優(yōu)缺點分析

    的應(yīng)用(基于低功耗廣域物聯(lián)網(wǎng)技術(shù)ZETA) ZETA作為一種低功耗廣域物聯(lián)網(wǎng)(LPWAN)技術(shù),雖然其直接應(yīng)用于機器學(xué)習(xí)的場景可能并不常見,但它可以通過提供高效、穩(wěn)定的物聯(lián)網(wǎng)通信支持,間接促進
    的頭像 發(fā)表于 12-20 09:11 ?364次閱讀

    什么是機器學(xué)習(xí)?通過機器學(xué)習(xí)方法能解決哪些問題?

    來源:Master編程樹“機器學(xué)習(xí)”最初的研究動機是讓計算機系統(tǒng)具有人的學(xué)習(xí)能力以便實現(xiàn)人工智能。因為沒有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?512次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    【「時間序列與機器學(xué)習(xí)」閱讀體驗】+ 簡單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時間序列分析與機器學(xué)習(xí)融合應(yīng)用的宏偉藍(lán)圖。作者不僅扎實地構(gòu)建了時間序列分析的基礎(chǔ)知識,更巧妙地展示了機器學(xué)習(xí)如何在這一領(lǐng)域發(fā)揮巨
    發(fā)表于 08-12 11:21

    【《時間序列與機器學(xué)習(xí)》閱讀體驗】+ 了解時間序列

    收到《時間序列與機器學(xué)習(xí)》一書,彩色印刷,公式代碼清晰,非常精美。感謝作者,感謝電子發(fā)燒友提供了一讓我學(xué)習(xí)時間序列及應(yīng)用的機會! 前言第一段描述了編寫背景: 由此可知,這是一本關(guān)于時
    發(fā)表于 08-11 17:55

    機器學(xué)習(xí)中的數(shù)據(jù)分割方法

    機器學(xué)習(xí)中,數(shù)據(jù)分割是一項至關(guān)重要的任務(wù),它直接影響到模型的訓(xùn)練效果、泛化能力以及最終的性能評估。本文將從多個方面詳細(xì)探討機器學(xué)習(xí)中數(shù)據(jù)分割的方法,包括
    的頭像 發(fā)表于 07-10 16:10 ?2135次閱讀

    機器學(xué)習(xí)算法原理詳解

    機器學(xué)習(xí)作為人工智能的一重要分支,其目標(biāo)是通過讓計算機自動從數(shù)據(jù)中學(xué)習(xí)并改進其性能,而無需進行明確的編程。本文將深入解讀幾種常見
    的頭像 發(fā)表于 07-02 11:25 ?1367次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機器學(xué)習(xí)的對比

    在人工智能的浪潮中,機器學(xué)習(xí)和深度學(xué)習(xí)無疑是兩大核心驅(qū)動力。它們各自以其獨特的方式推動著技術(shù)的進步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機器
    的頭像 發(fā)表于 07-01 11:40 ?1540次閱讀

    機器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一經(jīng)典數(shù)據(jù)集,在統(tǒng)計學(xué)習(xí)機器
    的頭像 發(fā)表于 06-27 08:27 ?1729次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典算法與應(yīng)用

    名單公布!【書籍評測活動NO.35】如何用「時間序列與機器學(xué)習(xí)」解鎖未來?

    ,如何將機器學(xué)習(xí)、深度學(xué)習(xí)或者大模型技術(shù)應(yīng)用在大規(guī)模的數(shù)據(jù)生產(chǎn)中,是一非常關(guān)鍵的問題。 國內(nèi)外已出版了許多關(guān)于機器
    發(fā)表于 06-25 15:00

    機器學(xué)習(xí)入門:基本概念介紹

    機器學(xué)習(xí)(GraphMachineLearning,簡稱GraphML)是機器學(xué)習(xí)的一分支,專注于利用圖形結(jié)構(gòu)的數(shù)據(jù)。在圖形結(jié)構(gòu)中,數(shù)據(jù)
    的頭像 發(fā)表于 05-16 08:27 ?552次閱讀
    圖<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>入門:基本概念<b class='flag-5'>介紹</b>

    機器學(xué)習(xí)怎么進入人工智能

    ,人工智能已成為一熱門領(lǐng)域,涉及到多個行業(yè)和領(lǐng)域,例如語音識別、機器翻譯、圖像識別等。 在編程中進行人工智能的關(guān)鍵是使用機器學(xué)習(xí)算法,這是一類基于樣本數(shù)據(jù)和模型訓(xùn)練來進行預(yù)測和判斷的
    的頭像 發(fā)表于 04-04 08:41 ?388次閱讀

    傅里葉變換基本原理及在機器學(xué)習(xí)應(yīng)用

    連續(xù)傅里葉變換(CFT)和離散傅里葉變換(DFT)是兩常見的變體。CFT用于連續(xù)信號,而DFT應(yīng)用于離散信號,使其與數(shù)字?jǐn)?shù)據(jù)和機器學(xué)習(xí)任務(wù)更加相關(guān)。
    發(fā)表于 03-20 11:15 ?1066次閱讀
    傅里葉變換基本原理及在<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>應(yīng)用
    主站蜘蛛池模板: 五月天激情在线 | 狠狠色丁香九九婷婷综合五月 | 成年男人午夜片免费观看 | 天天躁夜夜躁 | 免费在线黄网站 | 国产特级| 欧美性极品xxxxx | 色综合视频在线观看 | 亚洲成av人影片在线观看 | 亚洲国产精品乱码一区二区三区 | 久久精品大全 | 成年黄网站免费大全毛片 | www.干| 日本吻胸抓胸激烈视频网站 | 一级不卡毛片免费 | 天天干影院 | 可以免费看黄的网站 | 农村的毛片丨级 | 一级片免费在线 | 中日韩精品视频在线观看 | 美女福利在线观看 | 深爱激情五月网 | 女人张开腿等男人桶免费视频 | 加勒比黑人喝羽月希奶水 | 人人九九精 | 五月sese| 日本黄色的视频 | 天天操天天草 | 久久久久久久久综合 | 天堂成人在线观看 | 又粗又大又猛又爽免费视频 | 四虎影院观看 | 午夜日韩在线 | 国产妇女在线 | 久久婷婷人人澡人人爱91 | 久久影视免费观看网址 | 精品一区二区三区视频 | 亚洲手机看片 | 精品一区二区三区免费爱 | 精品视频69v精品视频 | 第一页综合 |