91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

最實用的的五種機器學習算法

電子工程師 ? 來源:安全牛 ? 作者:Alfred.N ? 2021-03-24 16:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文將推薦五種機器學習算法,你應該考慮是否將它們投入應用。這五種算法覆蓋最常用于聚類、分類、數值預測和樸素貝葉斯等四個門類。

1. 聚類算法:k-means

聚類算法的目標:觀察輸入數據集,并借助數據集中不同樣本的特征差異來努力辨別不同的數據組。聚類算法最強大之處在于,它不需要本文中其他算法所需的訓練過程,您只需簡單地提供數據,告訴算法你想創造多少簇(樣本的組別),算法會為每個簇來分配一個編號。這種規范聚類算法就是k-means。

舉個例子,你的應用可用k-means來按照營銷目的區分你的網絡服務的用戶。你只需要輸入(從電子商務網站獲取的)一組客戶的購買歷史,并確定四組客戶以進行分類營銷。此時,你為k-means提供了一個數據表,每行代表一名客戶,每列則是各種對客戶的購買行為特征(如成為客戶的時間、每月評價花費、每月評價訂單量、地理位置、對當天航運的使用比例等等)。算法會為表格增加一欄:編號1-4來表示不同的分組。

提示:使用kmeans函數或rxKmeans. 用以執行bt rx的函數是ScaleR的一部分,所以不能支持量很大的數據集。

2&3. 兩類、多類分類算法

分類算法的目標:輸入一行數據及一個類目名稱表,通過對數據的校驗估測其所屬的類目。分類算法通常按照分類時的類目總數分為兩類和多類分類算法。在你使用種算法預測新數據前,你需要預先使用一組類目可知的數據對算法加以訓練。

不妨舉個簡單的例子來說明兩類分類算法:想象一個你希望得到是/否(或真/偽)的兩極化情形。此時,類別分別為“是”和“否”(或者“真”和“偽”)。兩類分類的典型應用是:根據歷史天氣條件(如溫度、風速、降水、氣壓)和航班信息(如航空公司、起飛時間、航班號)來預測未來航班會推遲15分鐘離開還是照常起飛。輸出分為“延遲”和“不延遲”兩類。在大多數情況下,兩類分類算法的核心是邏輯回歸的使用,后者用于生成一個在0到1范圍內的值。如果該值小于0.5,往往會解釋為第一個類(如“不延遲”),否則會劃為第二類(如“延遲”)。

另一個應用是:預測貸款的償還情況,來作為拓展信用的一部分。你必須提供貸款人的相關數據,譬如信用分數、房產年限、工作時長、信用卡債務總額、數據采集年份以及有貸款違約記錄。分類為“會違約”和“不會違約”。這個例子之所以非常有趣,是因為對于一些機器學習所處理的難題來說,僅僅有預測結果并不足夠,還必須知曉結論是怎樣得出的。這時多組分類算法形成的決策樹就派上用場了,決策樹中的多組分類算法可以分析從輸入到最終生成預測的過程。回到貸款這一案例,不妨想象你是銀行方,當你拒絕了消費者的貸款新的信用卡要求時,消費者的下一個問題可能是“為什么?”。通過決策樹,你可以具體回答:“好吧,你的信用分數太低了,信用卡債臺高筑,工作年頭又太短了。”

充分理解兩類分類算法后,進一步理解多類分類算法就順理成章了。多類分類算法可應用于電影院,來告訴后者某部電影究竟是墊底的票房毒藥(不僅口碑差,而且主流觀眾不感興趣)、口碑導向(叫好不叫座)還是票房導向(口碑差,但是票房高)。三個分類分別是“毒藥”、“口碑導向”、“票房導向”。你也可以使用決策樹,來了解一部電影為何會得到這樣的評價。

提示:使用glm或rxLogit來進行兩類或多類分類。進行多類分類時,你可以使用rpart或rxDTree來建立可觀察決策樹。

4. 數值預測

數值預測算法的目標:根據一組輸入,預測一個具體數值。仍然使用上文中航班延誤的例子,我們現在要做的不再是預測航班是否會推遲15分鐘,數值預測算法將讓你知曉航班將具體被推遲多久。數值預測算法的核心是線性回歸的使用(不要與分類算法使用的邏輯回歸混淆),通過對歷史數據的線性擬合,線性回歸可以有效地進行數值預測。最好的例子是股票的預測,線性回歸根據過往數據的分布,擬合出一條最合適的直線,延長這條線你就可以預測將來的股票價格。

提示:使用Im或rxLinMod函數。

5. 樸素貝葉斯算法

最后,你的采納清單上還缺一個機器學習中勞苦功高的算法——樸素貝葉斯算法。它的核心是因果關系。更具體地說,樸素貝葉斯算法是在給定已知的成因的情況下,預測這一成因將產生的效果以及效果的程度。現實生活中的典型例子是癌癥檢測。你可以通過對病人特定病狀(效果)的觀察,來預測病人患有癌癥的概率(疾病是成因)。再舉個和你相關的例子,樸素貝葉斯算法可以根據你已購買的商品為你推薦其他商品。例如,你網購了一些雞蛋,算法會提醒你買些牛奶,因為你的購買歷史顯示:購買雞蛋(成因)會導致購買牛奶(效果)。樸素貝葉斯有趣的一點在于,它可以用于分類和數值預測。。

提示:使用naiveBayes和rxNaiveBayes函數。

結論

好了,你有了一個實用算法的清單。現在,重新審視你的應用,想一想哪些地方可以增添點機器學習帶來的智能性。

責任編輯:lq6

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 聚類算法
    +關注

    關注

    2

    文章

    118

    瀏覽量

    12354
  • 樸素貝葉斯
    +關注

    關注

    0

    文章

    12

    瀏覽量

    3475
  • 機器學習算法

    關注

    2

    文章

    47

    瀏覽量

    6655
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    FPGA在機器學習中的具體應用

    隨著機器學習和人工智能技術的迅猛發展,傳統的中央處理單元(CPU)和圖形處理單元(GPU)已經無法滿足高效處理大規模數據和復雜模型的需求。FPGA(現場可編程門陣列)作為一靈活且高效的硬件加速平臺
    的頭像 發表于 07-16 15:34 ?1150次閱讀

    【「# ROS 2智能機器人開發實踐」閱讀體驗】視覺實現的基礎算法的應用

    學習建議 對于初學者,建議先通過仿真(如Gazebo)驗證算法,再遷移到真實機器人,以降低硬件調試成本。 多參與開源社區(如ROS2的GitHub項目),學習前沿技術并貢獻代碼
    發表于 05-03 19:41

    請問STM32部署機器學習算法硬件至少要使用哪個系列的芯片?

    STM32部署機器學習算法硬件至少要使用哪個系列的芯片?
    發表于 03-13 07:34

    機器學習模型市場前景如何

    當今,隨著算法的不斷優化、數據量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發廣闊。下面,AI部落小編將探討機器學習模型市場
    的頭像 發表于 02-13 09:39 ?393次閱讀

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學習 AI,機器學習算法

    前言 由于本人最近在學習一些機器算法,AI 算法的知識,需要搭建一個學習環境,所以就在最近購買的華為云 Flexus X 實例上安裝了
    的頭像 發表于 01-02 13:43 ?577次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學習</b> AI,<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>

    傳統機器學習方法和應用指導

    在上一篇文章中,我們介紹了機器學習的關鍵概念術語。在本文中,我們會介紹傳統機器學習的基礎知識和多種算法特征,供各位老師選擇。 01 傳統
    的頭像 發表于 12-30 09:16 ?1249次閱讀
    傳統<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    如何選擇云原生機器學習平臺

    當今,云原生機器學習平臺因其彈性擴展、高效部署、低成本運營等優勢,逐漸成為企業構建和部署機器學習應用的首選。然而,市場上的云原生機器
    的頭像 發表于 12-25 11:54 ?483次閱讀

    什么是機器學習?通過機器學習方法能解決哪些問題?

    來源:Master編程樹“機器學習”最初的研究動機是讓計算機系統具有人的學習能力以便實現人工智能。因為沒有學習能力的系統很難被認為是具有智能的。目前被廣泛采用的
    的頭像 發表于 11-16 01:07 ?1004次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學習</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法能解決哪些問題?

    NPU與機器學習算法的關系

    在人工智能領域,機器學習算法是實現智能系統的核心。隨著數據量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一專門為深度
    的頭像 發表于 11-15 09:19 ?1313次閱讀

    LSTM神經網絡與其他機器學習算法的比較

    隨著人工智能技術的飛速發展,機器學習算法在各個領域中扮演著越來越重要的角色。長短期記憶網絡(LSTM)作為一特殊的循環神經網絡(RNN),因其在處理序列數據方面的優勢而受到廣泛關注。
    的頭像 發表于 11-13 10:17 ?2194次閱讀

    基于深度學習的二維拉曼光譜算法

    近日,天津大學精密儀器與光電子工程學院的光子芯片實驗室提出了一基于深度學習的二維拉曼光譜算法,成果以“Rapid and accurate bacteria identification
    的頭像 發表于 11-07 09:08 ?782次閱讀
    一<b class='flag-5'>種</b>基于深度<b class='flag-5'>學習</b>的二維拉曼光譜<b class='flag-5'>算法</b>

    【每天學點AI】KNN算法:簡單有效的機器學習分類器

    過程,其實就是一個簡單的分類問題,而KNN(K-NearestNeighbors)算法正是模仿這種人類決策過程的機器學習算法。|什么是KNN?KNN(K-NearestNeighbo
    的頭像 發表于 10-31 14:09 ?882次閱讀
    【每天學點AI】KNN<b class='flag-5'>算法</b>:簡單有效的<b class='flag-5'>機器</b><b class='flag-5'>學習</b>分類器

    人工智能、機器學習和深度學習存在什么區別

    人工智能指的是在某種程度上顯示出類似人類智能的設備。AI有很多技術,但其中一個很大的子集是機器學習——讓算法從數據中學習
    發表于 10-24 17:22 ?3037次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學習</b>和深度<b class='flag-5'>學習</b>存在什么區別

    LIBS結合機器學習算法的江西名優春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對象,研究激光誘導擊穿光譜結合機器學習的茶葉鑒別方法。將茶葉茶,水數據融合可有效鑒別春茶采收期,且數據融合后表現出更好的穩定性和魯棒性,LIBS結合機器
    的頭像 發表于 10-22 18:05 ?676次閱讀
    LIBS結合<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>的江西名優春茶采收期鑒別

    【「時間序列與機器學習」閱讀體驗】+ 鳥瞰這本書

    清晰,從時間序列分析的基礎理論出發,逐步深入到機器學習算法在時間序列預測中的應用,內容全面,循序漸進。每一章都經過精心設計,對理論知識進行了詳細的闡述,對實際案例進行了生動的展示,使讀者在理論與實踐
    發表于 08-12 11:28
    主站蜘蛛池模板: 女性一级全黄生活片免费看 | 久久久久久久国产免费看 | 91九色在线视频 | 99热这里精品 | 国产免费一区二区三区在线 | 国产白白白在线永久播放 | 免费看黄视频网站 | 色偷偷免费视频 | 成人中文在线 | 日日摸人人看97人人澡 | 亚洲天堂免费在线 | 日韩毛片在线视频 | 午夜三级国产精品理论三级 | 夜夜春宵翁熄性放纵古代 | 久久久久久久久综合 | 唐人呦一呦xxxx视频 | 欧美视频区 | www.四虎影| 久久国产免费观看精品 | 日本免费人成黄页在线观看视频 | 久久久久国产成人精品亚洲午夜 | 国产综合色在线视频区色吧图片 | 欧美性狂猛bbbbbbxxxx | 成人在线看片 | 激情春色网 | 青楼社区51在线视频视频 | 污污的网站免费阅读 | 国产一级aaa全黄毛片 | 日韩免费观看的一级毛片 | 日本不卡视频在线观看 | 美女视频黄a视频美女大全 美女视频一区二区 | 久久综合九色综合精品 | 午夜国产精品久久久久 | 日本视频三区 | 91在线播放免费不卡无毒 | 亚洲香蕉影视在线播放 | 欧美性生交xxxxx久久久 | 四虎影院视频 | 亚洲综合色丁香婷婷六月图片 | 亚洲黄站 | 久久国产美女免费观看精品 |