索引使用策略及優(yōu)化
MySQL的優(yōu)化主要分為結(jié)構(gòu)優(yōu)化(Scheme optimization)和查詢優(yōu)化(Query optimization)。本章討論的高性能索引策略主要屬于結(jié)構(gòu)優(yōu)化范疇。本章的內(nèi)容完全基于上文的理論基礎,實際上一旦理解了索引背后的機制,那么選擇高性能的策略就變成了純粹的推理,并且可以理解這些策略背后的邏輯。
示例數(shù)據(jù)庫
為了討論索引策略,需要一個數(shù)據(jù)量不算小的數(shù)據(jù)庫作為示例。本文選用MySQL官方文檔中提供的示例數(shù)據(jù)庫之一:employees。這個數(shù)據(jù)庫關系復雜度適中,且數(shù)據(jù)量較大。下圖是這個數(shù)據(jù)庫的E-R關系圖(引用自MySQL官方手冊)
MySQL官方文檔中關于此數(shù)據(jù)庫的頁面為http://dev.mysql.com/doc/employee/en/employee.html。里面詳細介紹了此數(shù)據(jù)庫,并提供了下載地址和導入方法,如果有興趣導入此數(shù)據(jù)庫到自己的MySQL可以參考文中內(nèi)容。
最左前綴原理與相關優(yōu)化
高效使用索引的首要條件是知道什么樣的查詢會使用到索引,這個問題和B+Tree中的“最左前綴原理”有關,下面通過例子說明最左前綴原理。
這里先說一下聯(lián)合索引的概念。在上文中,我們都是假設索引只引用了單個的列,實際上,MySQL中的索引可以以一定順序引用多個列,這種索引叫做聯(lián)合索引,一般的,一個聯(lián)合索引是一個有序元組《a1, a2, …, an》,其中各個元素均為數(shù)據(jù)表的一列,實際上要嚴格定義索引需要用到關系代數(shù),但是這里我不想討論太多關系代數(shù)的話題,因為那樣會顯得很枯燥,所以這里就不再做嚴格定義。另外,單列索引可以看成聯(lián)合索引元素數(shù)為1的特例。
以employees.titles表為例,下面先查看其上都有哪些索引:
從結(jié)果中可以到titles表的主索引為《emp_no, title, from_date》,還有一個輔助索引《emp_no》。為了避免多個索引使事情變復雜(MySQL的SQL優(yōu)化器在多索引時行為比較復雜),這里我們將輔助索引drop掉:
這樣就可以專心分析索引PRIMARY的行為了。
情況一:全列匹配。
很明顯,當按照索引中所有列進行精確匹配(這里精確匹配指“=”或“IN”匹配)時,索引可以被用到。這里有一點需要注意,理論上索引對順序是敏感的,但是由于MySQL的查詢優(yōu)化器會自動調(diào)整where子句的條件順序以使用適合的索引,例如我們將where中的條件順序顛倒:
效果是一樣的。
情況二:最左前綴匹配。
當查詢條件精確匹配索引的左邊連續(xù)一個或幾個列時,如《emp_no》或《emp_no, title》,所以可以被用到,但是只能用到一部分,即條件所組成的最左前綴。上面的查詢從分析結(jié)果看用到了PRIMARY索引,但是key_len為4,說明只用到了索引的第一列前綴。
情況三:查詢條件用到了索引中列的精確匹配,但是中間某個條件未提供。
此時索引使用情況和情況二相同,因為title未提供,所以查詢只用到了索引的第一列,而后面的from_date雖然也在索引中,但是由于title不存在而無法和左前綴連接,因此需要對結(jié)果進行掃描過濾from_date(這里由于emp_no唯一,所以不存在掃描)。如果想讓from_date也使用索引而不是where過濾,可以增加一個輔助索引《emp_no, from_date》,此時上面的查詢會使用這個索引。除此之外,還可以使用一種稱之為“隔離列”的優(yōu)化方法,將emp_no與from_date之間的“坑”填上。
首先我們看下title一共有幾種不同的值:
只有7種。在這種成為“坑”的列值比較少的情況下,可以考慮用“IN”來填補這個“坑”從而形成最左前綴:
這次key_len為59,說明索引被用全了,但是從type和rows看出IN實際上執(zhí)行了一個range查詢,這里檢查了7個key。看下兩種查詢的性能比較:
“填坑”后性能提升了一點。如果經(jīng)過emp_no篩選后余下很多數(shù)據(jù),則后者性能優(yōu)勢會更加明顯。當然,如果title的值很多,用填坑就不合適了,必須建立輔助索引。
情況四:查詢條件沒有指定索引第一列。
由于不是最左前綴,索引這樣的查詢顯然用不到索引。
情況五:匹配某列的前綴字符串。
此時可以用到索引,但是如果通配符不是只出現(xiàn)在末尾,則無法使用索引。(原文表述有誤,如果通配符%不出現(xiàn)在開頭,則可以用到索引,但根據(jù)具體情況不同可能只會用其中一個前綴)
情況六:范圍查詢。
范圍列可以用到索引(必須是最左前綴),但是范圍列后面的列無法用到索引。同時,索引最多用于一個范圍列,因此如果查詢條件中有兩個范圍列則無法全用到索引。
可以看到索引對第二個范圍索引無能為力。這里特別要說明MySQL一個有意思的地方,那就是僅用explain可能無法區(qū)分范圍索引和多值匹配,因為在type中這兩者都顯示為range。同時,用了“between”并不意味著就是范圍查詢,例如下面的查詢:
看起來是用了兩個范圍查詢,但作用于emp_no上的“BETWEEN”實際上相當于“IN”,也就是說emp_no實際是多值精確匹配。可以看到這個查詢用到了索引全部三個列。因此在MySQL中要謹慎地區(qū)分多值匹配和范圍匹配,否則會對MySQL的行為產(chǎn)生困惑。
情況七:查詢條件中含有函數(shù)或表達式。
很不幸,如果查詢條件中含有函數(shù)或表達式,則MySQL不會為這列使用索引(雖然某些在數(shù)學意義上可以使用)。例如:
雖然這個查詢和情況五中功能相同,但是由于使用了函數(shù)left,則無法為title列應用索引,而情況五中用LIKE則可以。再如:
顯然這個查詢等價于查詢emp_no為10001的函數(shù),但是由于查詢條件是一個表達式,MySQL無法為其使用索引。看來MySQL還沒有智能到自動優(yōu)化常量表達式的程度,因此在寫查詢語句時盡量避免表達式出現(xiàn)在查詢中,而是先手工私下代數(shù)運算,轉(zhuǎn)換為無表達式的查詢語句。
索引選擇性與前綴索引
既然索引可以加快查詢速度,那么是不是只要是查詢語句需要,就建上索引?答案是否定的。因為索引雖然加快了查詢速度,但索引也是有代價的:索引文件本身要消耗存儲空間,同時索引會加重插入、刪除和修改記錄時的負擔,另外,MySQL在運行時也要消耗資源維護索引,因此索引并不是越多越好。一般兩種情況下不建議建索引。
第一種情況是表記錄比較少,例如一兩千條甚至只有幾百條記錄的表,沒必要建索引,讓查詢做全表掃描就好了。至于多少條記錄才算多,這個個人有個人的看法,我個人的經(jīng)驗是以2000作為分界線,記錄數(shù)不超過 2000可以考慮不建索引,超過2000條可以酌情考慮索引。
另一種不建議建索引的情況是索引的選擇性較低。所謂索引的選擇性(Selectivity),是指不重復的索引值(也叫基數(shù),Cardinality)與表記錄數(shù)(#T)的比值:
Index Selectivity = Cardinality / #T
顯然選擇性的取值范圍為(0, 1],選擇性越高的索引價值越大,這是由B+Tree的性質(zhì)決定的。例如,上文用到的employees.titles表,如果title字段經(jīng)常被單獨查詢,是否需要建索引,我們看一下它的選擇性:
title的選擇性不足0.0001(精確值為0.00001579),所以實在沒有什么必要為其單獨建索引。
有一種與索引選擇性有關的索引優(yōu)化策略叫做前綴索引,就是用列的前綴代替整個列作為索引key,當前綴長度合適時,可以做到既使得前綴索引的選擇性接近全列索引,同時因為索引key變短而減少了索引文件的大小和維護開銷。下面以employees.employees表為例介紹前綴索引的選擇和使用。
從圖12可以看到employees表只有一個索引《emp_no》,那么如果我們想按名字搜索一個人,就只能全表掃描了:
如果頻繁按名字搜索員工,這樣顯然效率很低,因此我們可以考慮建索引。有兩種選擇,建《first_name》或《first_name, last_name》,看下兩個索引的選擇性:
《first_name》顯然選擇性太低,《first_name, last_name》選擇性很好,但是first_name和last_name加起來長度為30,有沒有兼顧長度和選擇性的辦法?可以考慮用first_name和last_name的前幾個字符建立索引,例如《first_name, left(last_name, 3)》,看看其選擇性:
選擇性還不錯,但離0.9313還是有點距離,那么把last_name前綴加到4:
這時選擇性已經(jīng)很理想了,而這個索引的長度只有18,比《first_name, last_name》短了接近一半,我們把這個前綴索引 建上:
此時再執(zhí)行一遍按名字查詢,比較分析一下與建索引前的結(jié)果:
性能的提升是顯著的,查詢速度提高了120多倍。
前綴索引兼顧索引大小和查詢速度,但是其缺點是不能用于ORDER BY和GROUP BY操作,也不能用于Covering index(即當索引本身包含查詢所需全部數(shù)據(jù)時,不再訪問數(shù)據(jù)文件本身)。
InnoDB的主鍵選擇與插入優(yōu)化
在使用InnoDB存儲引擎時,如果沒有特別的需要,請永遠使用一個與業(yè)務無關的自增字段作為主鍵。
經(jīng)常看到有帖子或博客討論主鍵選擇問題,有人建議使用業(yè)務無關的自增主鍵,有人覺得沒有必要,完全可以使用如學號或身份證號這種唯一字段作為主鍵。不論支持哪種論點,大多數(shù)論據(jù)都是業(yè)務層面的。如果從數(shù)據(jù)庫索引優(yōu)化角度看,使用InnoDB引擎而不使用自增主鍵絕對是一個糟糕的主意。
上文討論過InnoDB的索引實現(xiàn),InnoDB使用聚集索引,數(shù)據(jù)記錄本身被存于主索引(一顆B+Tree)的葉子節(jié)點上。這就要求同一個葉子節(jié)點內(nèi)(大小為一個內(nèi)存頁或磁盤頁)的各條數(shù)據(jù)記錄按主鍵順序存放,因此每當有一條新的記錄插入時,MySQL會根據(jù)其主鍵將其插入適當?shù)墓?jié)點和位置,如果頁面達到裝載因子(InnoDB默認為15/16),則開辟一個新的頁(節(jié)點)。
如果表使用自增主鍵,那么每次插入新的記錄,記錄就會順序添加到當前索引節(jié)點的后續(xù)位置,當一頁寫滿,就會自動開辟一個新的頁。如下圖所示:
這樣就會形成一個緊湊的索引結(jié)構(gòu),近似順序填滿。由于每次插入時也不需要移動已有數(shù)據(jù),因此效率很高,也不會增加很多開銷在維護索引上。
如果使用非自增主鍵(如果身份證號或?qū)W號等),由于每次插入主鍵的值近似于隨機,因此每次新紀錄都要被插到現(xiàn)有索引頁得中間某個位置:
此時MySQL不得不為了將新記錄插到合適位置而移動數(shù)據(jù),甚至目標頁面可能已經(jīng)被回寫到磁盤上而從緩存中清掉,此時又要從磁盤上讀回來,這增加了很多開銷,同時頻繁的移動、分頁操作造成了大量的碎片,得到了不夠緊湊的索引結(jié)構(gòu),后續(xù)不得不通過OPTIMIZE TABLE來重建表并優(yōu)化填充頁面。
因此,只要可以,請盡量在InnoDB上采用自增字段做主鍵。
后記
這篇文章斷斷續(xù)續(xù)寫了半個月,主要內(nèi)容就是上面這些了。不可否認,這篇文章在一定程度上有紙上談兵之嫌,因為我本人對MySQL的使用屬于菜鳥級別,更沒有太多數(shù)據(jù)庫調(diào)優(yōu)的經(jīng)驗,在這里大談數(shù)據(jù)庫索引調(diào)優(yōu)有點大言不慚。就當是我個人的一篇學習筆記了。
其實數(shù)據(jù)庫索引調(diào)優(yōu)是一項技術活,不能僅僅靠理論,因為實際情況千變?nèi)f化,而且MySQL本身存在很復雜的機制,如查詢優(yōu)化策略和各種引擎的實現(xiàn)差異等都會使情況變得更加復雜。但同時這些理論是索引調(diào)優(yōu)的基礎,只有在明白理論的基礎上,才能對調(diào)優(yōu)策略進行合理推斷并了解其背后的機制,然后結(jié)合實踐中不斷的實驗和摸索,從而真正達到高效使用MySQL索引的目的。
另外,MySQL索引及其優(yōu)化涵蓋范圍非常廣,本文只是涉及到其中一部分。如與排序(ORDER BY)相關的索引優(yōu)化及覆蓋索引(Covering index)的話題本文并未涉及,同時除B-Tree索引外MySQL還根據(jù)不同引擎支持的哈希索引、全文索引等等本文也并未涉及。如果有機會,希望再對本文未涉及的部分進行補充吧。
責任編輯:haq
-
數(shù)據(jù)庫
+關注
關注
7文章
3846瀏覽量
64685 -
C++
+關注
關注
22文章
2114瀏覽量
73857
原文標題:C++基礎語法梳理:數(shù)據(jù)庫丨索引使用和優(yōu)化
文章出處:【微信號:cyuyanxuexi,微信公眾號:C語言編程學習基地】歡迎添加關注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關推薦
MySQL數(shù)據(jù)庫的安裝
![MySQL<b class='flag-5'>數(shù)據(jù)庫</b>的安裝](https://file1.elecfans.com/web3/M00/05/E2/wKgZPGeF2XWAe83fAAAW9lhgvGk652.jpg)
云數(shù)據(jù)庫是哪種數(shù)據(jù)庫類型?
數(shù)據(jù)庫加密辦法
數(shù)據(jù)庫數(shù)據(jù)恢復—Mysql數(shù)據(jù)庫表記錄丟失的數(shù)據(jù)恢復流程
![<b class='flag-5'>數(shù)據(jù)庫</b><b class='flag-5'>數(shù)據(jù)</b>恢復—Mysql<b class='flag-5'>數(shù)據(jù)庫</b>表記錄丟失的<b class='flag-5'>數(shù)據(jù)</b>恢復流程](https://file.elecfans.com/web2/M00/7B/26/pYYBAGNzCiiANj77AAH4iOB3xKM259.png)
數(shù)據(jù)庫事件觸發(fā)的設置和應用
數(shù)據(jù)庫數(shù)據(jù)恢復—MYSQL數(shù)據(jù)庫ibdata1文件損壞的數(shù)據(jù)恢復案例
數(shù)據(jù)庫數(shù)據(jù)恢復—通過拼接數(shù)據(jù)庫碎片恢復SQLserver數(shù)據(jù)庫
![<b class='flag-5'>數(shù)據(jù)庫</b><b class='flag-5'>數(shù)據(jù)</b>恢復—通過拼接<b class='flag-5'>數(shù)據(jù)庫</b>碎片恢復SQLserver<b class='flag-5'>數(shù)據(jù)庫</b>](https://file1.elecfans.com/web1/M00/F4/07/wKgaoWcjE32AbQdWAAJD_hojvJc119.png)
云數(shù)據(jù)庫可以租用嗎?完整租用流程來了
MySQL性能優(yōu)化淺析及線上案例
![MySQL性能<b class='flag-5'>優(yōu)化</b>淺析及線上案例](https://file1.elecfans.com//web1/M00/F3/6F/wKgaoWcXUWKABMR_AAGJMTJ9NfA542.png)
Oracle數(shù)據(jù)恢復—異常斷電后Oracle數(shù)據(jù)庫啟庫報錯的數(shù)據(jù)恢復案例
![Oracle<b class='flag-5'>數(shù)據(jù)</b>恢復—異常斷電后Oracle<b class='flag-5'>數(shù)據(jù)庫</b>啟<b class='flag-5'>庫</b>報錯的<b class='flag-5'>數(shù)據(jù)</b>恢復案例](https://file1.elecfans.com/web2/M00/08/B8/wKgZomb6Ns-AbiICAAFlXAFpKKU086.png)
企業(yè)級數(shù)據(jù)庫的配置和管理要求匯總
數(shù)據(jù)庫數(shù)據(jù)恢復—SQL Server數(shù)據(jù)庫出現(xiàn)823錯誤的數(shù)據(jù)恢復案例
![<b class='flag-5'>數(shù)據(jù)庫</b><b class='flag-5'>數(shù)據(jù)</b>恢復—SQL Server<b class='flag-5'>數(shù)據(jù)庫</b>出現(xiàn)823錯誤的<b class='flag-5'>數(shù)據(jù)</b>恢復案例](https://file1.elecfans.com/web2/M00/07/F4/wKgaombs78mANJ1GAAPeSoXHVPE244.png)
數(shù)據(jù)庫數(shù)據(jù)恢復—SQL Server數(shù)據(jù)庫所在分區(qū)空間不足報錯的數(shù)據(jù)恢復案例
數(shù)據(jù)庫數(shù)據(jù)恢復—raid5陣列上層Sql Server數(shù)據(jù)庫數(shù)據(jù)恢復案例
![<b class='flag-5'>數(shù)據(jù)庫</b><b class='flag-5'>數(shù)據(jù)</b>恢復—raid5陣列上層Sql Server<b class='flag-5'>數(shù)據(jù)庫</b><b class='flag-5'>數(shù)據(jù)</b>恢復案例](https://file.elecfans.com/web2/M00/A2/AD/pYYBAGRLbSSAHhFWAAI9vWNRQec919.png)
搭載英偉達GPU,全球領先的向量數(shù)據(jù)庫公司Zilliz發(fā)布Milvus2.4向量數(shù)據(jù)庫
![搭載英偉達GPU,全球領先的向量<b class='flag-5'>數(shù)據(jù)庫</b>公司Zilliz發(fā)布Milvus2.4向量<b class='flag-5'>數(shù)據(jù)庫</b>](https://file1.elecfans.com//web2/M00/C7/33/wKgaomYGuDyAIuO1AAF6TrvbEGY398.png)
評論