在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

氮化鎵(GaN)和碳化硅(SiC)的區別在哪里?

安森美 ? 來源:安森美 ? 作者:安森美 ? 2022-04-01 11:05 ? 次閱讀

幾十年來,硅一直主導著晶體管世界。但這種情況已在逐漸改變。由兩種或三種材料組成的化合物半導體已被開發出來,提供獨特的優勢和卓越的特性。例如,有了化合物半導體,我們開發出了發光二極管(LED)。一種類型是由砷化鎵(GaAs)和磷砷化鎵(GaAsP)組成。其他的則使用銦和磷。

問題是,化合物半導體更難制造,也更貴。然而,與硅相比,它們具有顯著的優勢。新的更高要求的應用,如汽車電氣系統和電動汽車(EVs),正發現化合物半導體能更好地滿足其嚴格的規格要求。

氮化鎵(GaN)和碳化硅(SiC)功率晶體管這兩種化合物半導體器件已作為方案出現。這些器件與長使用壽命的硅功率橫向擴散金屬氧化物半導體(LDMOS) MOSFET和超級結MOSFET競爭。GaN和SiC器件在某些方面是相似的,但也有很大的差異。本文對兩者進行了比較,并提供了一些實例,以助您為下一個設計做決定。

34f3e604-b166-11ec-aa7f-dac502259ad0.png

圖1.顯示了流行的高壓、大電流晶體管和其他器件的功率能力與開關頻率的關系,以及主要的應用。

寬禁帶半導體

化合物半導體被稱為寬禁帶(WBG)器件。若不評介晶格結構、能級和其他令人頭疼的半導體物理學,我們只說WBG的定義是一個試圖描述電流(電子)如何在化合物半導體中流動的模型。

WBG化合物半導體具有較高的電子遷移率和較高的帶隙能量,轉化為優于硅的特性。由WBG化合物半導體制成的晶體管具有更高的擊穿電壓和對高溫的耐受性。這些器件在高壓和高功率應用中比硅更有優勢。

35133ae0-b166-11ec-aa7f-dac502259ad0.png

圖2. 雙裸片雙場效應管(FET)級聯電路將GaN晶體管轉換為常關斷器件,實現了大功率開關電路中的標準增強型工作模式

與硅相比,WBG晶體管的開關速度也更快,可在更高的頻率下工作。更低的“導通”電阻意味著它們耗散的功率更小,從而提升能效。這種獨特的特性組合使這些器件對汽車應用中一些最嚴苛要求的電路具有吸引力,特別是混合動力和電動車。

GaN和SiC晶體管正變得唾手可得,以應對汽車電氣設備的挑戰。GaN和SiC器件的主要賣點是這些優勢:

高電壓能力,有650 V、900 V和1200 V的器件。

更快的開關速度。

更高的工作溫度。

更低導通電阻,功率耗散最小,能效更高。

GaN晶體管

射頻(RF)功率領域,GaN晶體管被發現有早期的商機。該材料的本質使耗盡型場效應晶體管(FET)得以發展。耗盡型(或D型)FET被稱為假態高電子遷移率晶體管(pHEMT),是天然“導通”的器件;由于沒有門極控制輸入,存在一個自然的導通通道。門極輸入信號控制通道的導通,并導通和關斷該器件。

由于在開關應用中,通?!瓣P斷”的增強型(或E型)器件是首選,這導致了E型GaN器件的發展。首先是兩個FET器件的級聯(圖2)。現在,標準的e型GaN器件已問世。它們可以在高達10兆赫頻率下進行開關,功率達幾十千瓦。

GaN器件被廣泛用于無線設備中,作為頻率高達100 GHz的功率放大器。一些主要的用例是蜂窩基站功率放大器、軍用雷達、衛星發射器和通用射頻放大。然而,由于高壓(高達1,000 V)、高溫和快速開關,它們也被納入各種開關電源應用,如DC-DC轉換器逆變器和電池充電器。

SiC晶體管

SiC晶體管是天然的E型MOSFET。這些器件可在高達1 MHz的頻率下進行開關,其電壓和電流水平遠高于硅MOSFET。最大漏源電壓高達約1,800 V,電流能力為100安培。此外,SiC器件的導通電阻比硅MOSFET低得多,因而在所有開關電源應用(SMPS設計)中的能效更高。一個關鍵的缺點是它們需要比其他MOSFET更高的門極驅動電壓,但隨著設計的改進,這不再是缺點。

SiC器件需要18至20伏的門極電壓驅動,導通具有低導通電阻的器件。標準的Si MOSFET只需要不到10伏的門極就能完全導通。此外,SiC器件需要一個-3至-5 V的門極驅動來切換到關斷狀態。不過,專用門極驅動IC已被開發出來滿足這一需要。SiC MOSFET通常比其他替代品更貴,但其高壓、高電流的能力使它們很適合用于汽車電源電路。

WBG晶體管的競爭

GaN和SiC器件都與其他成熟的半導體競爭,特別是硅LDMOS MOSFET、超級結MOSFET和IGBT。在許多應用中,這些老的器件正逐漸被GaN和SiC晶體管所取代。

例如,在許多應用中,IGBT正在被SiC器件取代。SiC器件可在更高的頻率下開關(100千赫+與20千赫),從而允許減少任何電感或變壓器的尺寸和成本,同時提高能效。此外,SiC可以比GaN處理更大的電流。

總結GaN與SiC的比較,以下是重點:

GaN的開關速度比Si快。

SiC工作電壓比GaN更高。

SiC需要高的門極驅動電壓。

超級結MOSFET正逐漸被GaN和SiC取代。SiC似乎是車載充電器(OBC)的最愛。隨著工程師們發現較新的器件并獲得使用經驗,這種趨勢無疑將持續下去。

汽車應用

許多功率電路和器件可用GaN和SiC進行設計而得到改善。最大的受益者之一是汽車電氣系統。現代混合動力車和純電動車含有可使用這些器件的設備。其中一些流行的應用是OBC、DC-DC轉換器、電機驅動器和激光雷達(LiDAR)。圖3指出了電動車中需要高功率開關晶體管的主要子系統。

35278e14-b166-11ec-aa7f-dac502259ad0.png

圖3. 用于混合動力車和電動車的WBG車載充電器(OBC)。交流輸入經過整流、功率因數校正(PFC),然后進行DC-DC轉換(一個輸出用于給高壓電池充電,另一個用于給低壓電池充電)。

DC-DC轉換器。這是個電源電路,將高的電池電壓轉換為較低的電壓,以運行其他電氣設備?,F在電池的電壓范圍高達600伏或900伏。DC-DC轉換器將其降至48伏或12伏,或同時降至48伏和12伏,用于其他電子元件的運行(圖3)。在混合動力電動車和電動車(HEVEVs)中,DC-DC也可用于電池組和逆變器之間的高壓總線。

車載充電器(OBCs)。插電式HEVEV和EVs包含一個內部電池充電器,可以連接到交流電源上。這樣就可以在家里充電,而不需要外部的AC? DC充電器(圖4)。

主驅電機驅動器。主驅電機是高輸出的交流電機,驅動車輛的車輪。驅動器是個逆變器,將電池電壓轉換為三相交流電,使電機運轉。

LiDAR。LiDAR指的是一種結合了光和雷達方法來探測和識別周圍物體的技術。它用脈沖紅外激光掃描360度的區域,并檢測反射光。這些信息被轉化為大約300米范圍內的詳細三維圖像,分辨率為幾厘米。它的高分辨率使其成為車輛的理想傳感器,特別是自動駕駛,以提高對附近物體的識別能力。LiDAR裝置在12-24伏的直流電壓范圍內工作,該電壓來自于一個DC?DC轉換器。

353c89c2-b166-11ec-aa7f-dac502259ad0.png

圖4. 一個典型的DC-DC轉換器用于將高電池電壓轉換為12伏和/或48伏。高壓電橋中使用的IGBT正逐漸被SiC MOSFET所取代。

由于GaN和SiC晶體管具有高電壓、大電流和快速開關的特點,為汽車電氣設計人員提供了靈活和更簡單的設計以及卓越的性能。

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 氮化鎵
    +關注

    關注

    61

    文章

    1694

    瀏覽量

    116946
  • 半導體器件
    +關注

    關注

    12

    文章

    774

    瀏覽量

    32382
  • 碳化硅
    +關注

    關注

    25

    文章

    2916

    瀏覽量

    49571

原文標題:氮化鎵(GaN)和碳化硅(SiC)的區別在哪里?這篇指南送給你

文章出處:【微信號:onsemi-china,微信公眾號:安森美】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    為什么碳化硅Cascode JFET 可以輕松實現硅到碳化硅的過渡?

    電力電子器件高度依賴于硅(Si)、碳化硅SiC)和氮化高電子遷移率晶體管(GaN HEMT)等半導體材料。雖然硅一直是傳統的選擇,但
    發表于 03-12 11:31 ?313次閱讀
    為什么<b class='flag-5'>碳化硅</b>Cascode JFET 可以輕松實現硅到<b class='flag-5'>碳化硅</b>的過渡?

    納微半導體氮化碳化硅技術進入戴爾供應鏈

    近日,GaNFast氮化功率芯片和GeneSiC碳化硅功率器件的行業領導者——納微半導體(納斯達克股票代碼:NVTS)今日宣布其氮化
    的頭像 發表于 02-07 13:35 ?266次閱讀
    納微半導體<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>和<b class='flag-5'>碳化硅</b>技術進入戴爾供應鏈

    為什么650V SiC碳化硅MOSFET全面取代超結MOSFET和高壓GaN氮化器件?

    650V SiC碳化硅MOSFET全面取代超結MOSFET和高壓GaN氮化器件
    的頭像 發表于 01-23 16:27 ?401次閱讀
    為什么650V <b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>MOSFET全面取代超結MOSFET和高壓<b class='flag-5'>GaN</b><b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>器件?

    40mR/650V SiC 碳化硅MOSFET,替代30mR 超結MOSFET或者20-30mR的GaN!

    BASiC基本半導體40mR/650V SiC 碳化硅MOSFET,替代30mR 超結MOSFET或者20-30mR的GaN! BASiC基本半導體40mR/650V SiC
    發表于 01-22 10:43

    SiC碳化硅MOSFET功率模塊在工商業儲能變流器PCS中的應用

    *附件:國產SiC碳化硅MOSFET功率模塊在工商業儲能變流器PCS中的應用.pdf
    發表于 01-20 14:19

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    具有決定性的影響。因此,深入理解柵極氧化層的特性,并掌握其可靠性測試方法,對于推動碳化硅 MOSFET的應用和發展具有重要意義。今天的“SiC科普小課堂”將聚焦于“柵極氧化層”這一新話題:“什么是柵極
    發表于 01-04 12:37

    碳化硅SiC制造工藝詳解 碳化硅SiC與傳統半導體對比

    碳化硅SiC制造工藝詳解 碳化硅SiC)作為一種高性能的半導體材料,其制造工藝涉及多個復雜步驟,以下是對SiC制造工藝的詳細介紹: 原材料
    的頭像 發表于 11-25 16:32 ?3091次閱讀

    碳化硅SiC) 與氮化GaN)應用 | 氮化硼高導熱絕緣片

    SiCGaN被稱為“寬帶隙半導體”(WBG)。由于使用的生產工藝,WBG設備顯示出以下優點:1.寬帶隙半導體氮化GaN)和
    的頭像 發表于 09-16 08:02 ?971次閱讀
    <b class='flag-5'>碳化硅</b> (<b class='flag-5'>SiC</b>) 與<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b> (<b class='flag-5'>GaN</b>)應用  | <b class='flag-5'>氮化</b>硼高導熱絕緣片

    氮化碳化硅哪個有優勢

    氮化GaN)和碳化硅SiC)都是當前半導體材料領域的佼佼者,它們各自具有獨特的優勢,應用領域也有所不同。以下是對兩者優勢的比較:
    的頭像 發表于 09-02 11:26 ?2282次閱讀

    碳化硅氮化哪種材料更好

    引言 碳化硅SiC)和氮化GaN)是兩種具有重要應用前景的第三代半導體材料。它們具有高熱導率、高電子遷移率、高擊穿場強等優異的物理化學
    的頭像 發表于 09-02 11:19 ?1631次閱讀

    碳化硅晶圓和硅晶圓的區別是什么

    以下是關于碳化硅晶圓和硅晶圓的區別的分析: 材料特性: 碳化硅SiC)是一種寬禁帶半導體材料,具有比硅(Si)更高的熱導率、電子遷移率和擊穿電場。這使得
    的頭像 發表于 08-08 10:13 ?2251次閱讀

    氮化GaN)的最新技術進展

    本文要點氮化是一種晶體半導體,能夠承受更高的電壓。氮化器件的開關速度更快、熱導率更高、導通電阻更低且擊穿強度更高。氮化
    的頭像 發表于 07-06 08:13 ?1140次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>(<b class='flag-5'>GaN</b>)的最新技術進展

    碳化硅氮化的未來將怎樣共存

    在這個電子產品更新換代速度驚人的時代,半導體市場的前景無疑是光明的。新型功率半導體材料,比如碳化硅(SiC)和氮化(GaN),因其獨特的優
    的頭像 發表于 04-07 11:37 ?989次閱讀
    <b class='flag-5'>碳化硅</b>與<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>的未來將怎樣共存

    SIC 碳化硅認識

    好,硬度大(莫氏硬度為9.5級,僅次于世界上最硬的金剛石(10級))、導熱性能優良、高溫抗氧化能力強等。由于天然含量甚少,碳化硅主要多為人造。 第三代半導體指的是SiCGaN、ZnO、金剛石(C)、AlN等具有寬禁帶(Eg>2
    的頭像 發表于 04-01 10:09 ?1457次閱讀
    <b class='flag-5'>SIC</b> <b class='flag-5'>碳化硅</b>認識
    主站蜘蛛池模板: 国产一级又色又爽又黄大片 | 日本亚洲成人 | 国内亚州视频在线观看 | 婷婷色在线 | 3344成年在线视频免费播放男男 | 高清国产美女在线观看 | 噜啪啪| 国产精品久久久久天天影视 | 奇米网狠狠干 | 亚色国产| 在线永久免费播放视频 | 最近高清在线国语 | 天天拍夜夜添久久精品免费 | 日本免费一区二区在线观看 | bt天堂在线最新版在线 | 成人国产在线24小时播放视频 | sihu免费观看在线高清 | 美女扒开尿口给男人捅 | 手机在线看 | 天天看黄 | 黄网站色视频免费看无下截 | aa毛片 | 日本高清在线3344www | h视频在线免费观看 | 久久精品亚洲一级毛片 | 亚洲欧美综合一区二区三区四区 | 国产黄色小视频 | 韩国三级日本三级在线观看 | a在线免费 | 狠狠色噜噜狠狠狠狠999米奇 | 国产精品14p | 免费网站在线视频美女被 | 亚洲视频你懂的 | 欧美黑人xxxx猛牲大交 | 国产三级国产精品国产普男人 | 欧美xxxx色视频在线观看免费 | 久久性感美女视频 | 久久婷婷国产综合精品 | 同性恋激情视频 | 福利一区二区在线观看 | 日本x色视频 |