在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

常用銳化算法及Sobel銳化的介紹

FPGA技術江湖 ? 來源:FPGA技術江湖 ? 作者:FPGA技術江湖 ? 2022-05-05 11:05 ? 次閱讀

1. 圖像銳化原理介紹

在增強圖像之前一般會先對圖像進行平滑處理以減少或消除噪聲。圖像的能量主要集中在低頻部分,而噪聲和圖像邊緣信息的能量主要集中在高頻部分。因此,平滑處理會使原始圖像的邊緣和輪廓變得模糊。為了減少這類不利效果的影響,需要利用圖像銳化技術,使圖像的邊緣變得清晰。圖像銳化處理主要有兩個目的:一是與圖像平滑處理相反,增強圖像邊緣,使模糊的圖像更加清晰,顏色變得鮮明突出,圖像的質量有所改善,產生更適合人觀察和識別的圖像;二是經過銳化處理后,目標物體的邊緣鮮明,以便于計算機提取目標物體的邊界、對圖像進行分割、目標區(qū)域識別、區(qū)域形狀提取等,為圖像理解和分析打下基礎。 經過平滑處理的圖像變得模糊的根本原因是因為圖像受到了平均或積分運算,因此可以對其進行逆運算(如微分運算)就可以使圖像變得清晰。微分運算是求信號的變化率,由傅立葉變換的微分性質可知,微分運算具有加強高頻分量的作用。但需要注意的是,進行銳化處理的圖像必須有較高的性噪比,否則銳化后圖像性噪比反而更低,從而使得噪聲增加的比信號還要多,因此一般是先消除或減輕噪聲后再進行銳化處理,如圖1所示。

8fa21f6c-cbf1-11ec-bce3-dac502259ad0.png

1 圖像銳化示意圖

物體的邊緣是以圖像局部特性不連續(xù)性的形式出現(xiàn)的,即邊緣意味著一個區(qū)域的結束和另一個區(qū)域的開始。圖像邊緣有方向和幅度兩個參數(shù)。通常,沿邊緣走向的像素變化平緩,而垂直于邊緣走向的像素變化劇烈。邊緣一般有兩類(圖2所示):(1)階躍狀邊緣,它兩邊的像素灰度值顯著不同;(2)屋頂狀邊緣,它位于像素灰度值從增加到減少(或從減少到增加)的變化轉折點。經典的邊緣提取方法是考慮圖像的每個像素在某個領域內的變化,利用邊緣鄰近一階或二階方向導數(shù)變化規(guī)律來檢測邊緣。圖像灰度值的顯著變化可以用一階差分替代一階微分的梯度來表示,分別以梯度向量的幅度和方向來表示。因此,圖像中陡峭邊緣的梯度值很大;灰度值變化平緩的地方,梯度值較小;灰度值相同的地方,梯度值為零。

下面開始介紹運用一階微分和二階微分運算來進行圖像邊緣檢測的原理。

8fc7846e-cbf1-11ec-bce3-dac502259ad0.png

2 邊緣類型

1.1.一階微分邊緣檢測

一階微分主要是指梯度模運算,圖像的梯度模值包含了邊界及細節(jié)信息。圖像8fe77a80-cbf1-11ec-bce3-dac502259ad0.png在點90047982-cbf1-11ec-bce3-dac502259ad0.png處的梯度定義為:9024ab8a-cbf1-11ec-bce3-dac502259ad0.png由于數(shù)字圖像是離散的,所以可以用差分來替代微分,即:90454a52-cbf1-11ec-bce3-dac502259ad0.png906a2656-cbf1-11ec-bce3-dac502259ad0.png ?梯度的幅值即模值,為:90907de2-cbf1-11ec-bce3-dac502259ad0.png ?梯度的方向為:90b805e2-cbf1-11ec-bce3-dac502259ad0.png ?對圖像f使用梯度模算子進行運算后,可產生一幅梯度圖像g,圖像g和圖像f之間的像素關系為:90dfcf96-cbf1-11ec-bce3-dac502259ad0.png ?其中G為梯度模算子。由于梯度圖像g反映了圖像f的灰度變化分布信息,因此可以對其進行某種適當?shù)奶幚砗妥儞Q,或將變換后的梯度圖像和原圖像組合作為f銳化后的圖像。運用一階微分運算的邊緣檢測算子包括Robert算子、Prewitt算子和Sobel算子等等,將在后續(xù)小節(jié)中對Robert和Sobel邊緣檢測算法的實現(xiàn)進行介紹。

1.2.二階微分邊緣檢測

二階微分定義為90fb11ac-cbf1-11ec-bce3-dac502259ad0.png。考慮坐標旋轉變換,設P點旋轉前坐標為91186ebe-cbf1-11ec-bce3-dac502259ad0.png,順時針旋轉θ°后得913784fc-cbf1-11ec-bce3-dac502259ad0.png,如圖3所示,則有: 915784e6-cbf1-11ec-bce3-dac502259ad0.png圖3 坐標旋轉變換9175747e-cbf1-11ec-bce3-dac502259ad0.png9196fb08-cbf1-11ec-bce3-dac502259ad0.png91bbfd0e-cbf1-11ec-bce3-dac502259ad0.png ?函數(shù)8fe77a80-cbf1-11ec-bce3-dac502259ad0.png91f7b33a-cbf1-11ec-bce3-dac502259ad0.png的一階偏導數(shù)為921a29a6-cbf1-11ec-bce3-dac502259ad0.png ?函數(shù)8fe77a80-cbf1-11ec-bce3-dac502259ad0.png924b8ffa-cbf1-11ec-bce3-dac502259ad0.png的一階偏導數(shù)為926be1ce-cbf1-11ec-bce3-dac502259ad0.png ?函數(shù)8fe77a80-cbf1-11ec-bce3-dac502259ad0.png91f7b33a-cbf1-11ec-bce3-dac502259ad0.png的二階偏導數(shù)為92acd116-cbf1-11ec-bce3-dac502259ad0.png ?函數(shù)8fe77a80-cbf1-11ec-bce3-dac502259ad0.png924b8ffa-cbf1-11ec-bce3-dac502259ad0.png的二階偏導數(shù)為930d8344-cbf1-11ec-bce3-dac502259ad0.png ?將函數(shù)8fe77a80-cbf1-11ec-bce3-dac502259ad0.png91f7b33a-cbf1-11ec-bce3-dac502259ad0.png924b8ffa-cbf1-11ec-bce3-dac502259ad0.png的二階偏導數(shù)相加得93588a74-cbf1-11ec-bce3-dac502259ad0.png ?由此可見,二階微分具有各向同性、旋轉不變性的特征,從而滿足不同走向的圖像邊緣的銳化要求。 由于數(shù)字圖像是離散的,所以可以用差分來替代微分,即: 9378ba24-cbf1-11ec-bce3-dac502259ad0.png93928878-cbf1-11ec-bce3-dac502259ad0.png93b18458-cbf1-11ec-bce3-dac502259ad0.png ?后續(xù)小節(jié)將要介紹的Laplacian邊緣檢測算法正是基于二階微分運算。

1.3.一階微分與二階微分邊緣檢測對比

一階微分和二階微分運算都可以用來檢測圖像邊緣,但它們對邊緣的檢測原理和檢測效果是有差異的,如下所示: (1)對于突變型的細節(jié),通過一階微分的極值點和二階微分的過零點均可以檢測出來,如圖4所示。

93d33a9e-cbf1-11ec-bce3-dac502259ad0.png

圖4 突變型細節(jié)

(2)對于細線型的細節(jié),通過一階微分的過零點和二階微分的極值點均可以檢測出來,如圖5所示。

93f364fe-cbf1-11ec-bce3-dac502259ad0.png

圖5 細線型細節(jié)

(3)對于漸變型的細節(jié),一般情況下突變幅度小、定位難、不易檢測,但二階微分的信息比一階微分的信息多,如圖6所示。

94113754-cbf1-11ec-bce3-dac502259ad0.png

圖6 漸變型細節(jié)

從圖像的景物細節(jié)的灰度分布特性可知,有些灰度變化特性一階微分的描述不是很明確,為此,采用二階微分能夠獲得更豐富的景物細節(jié)。

2.Sobel邊緣檢測與銳化的實現(xiàn)

2.1.Sobel邊緣檢測算法理論

Robert算子只采用梯度微分銳化圖像,會讓噪聲、條紋得到增強,而Sobel邊緣檢測算子則在一定程度上解決了這個問題,它是一種先求平均、再求微分、最后求梯度的算子,其算子形式如下所示。顯然,Sobel算子只考慮了源像素點周圍8個相鄰像素點的水平和垂直方向的像素突變,而沒有加入源像素點灰度值的計算。

9431b330-cbf1-11ec-bce3-dac502259ad0.png

945e0886-cbf1-11ec-bce3-dac502259ad0.png

Sobel算子的水平和垂直模板如圖12所示,分別對水平邊緣和垂直邊緣的影響最大。

94803046-cbf1-11ec-bce3-dac502259ad0.png

圖12 Sobel算子模板

Sobel算子在一個方向求微分,而在另一個方向求平均,因而對噪聲相對不敏感,具有抑制噪聲的作用。由于像素平均相當于對圖像進行低通濾波,所以Sobel算子對邊緣的定位不如Robert算子。但與Robert算子相比,Sobel算子有一定的抗干擾性,圖像效果比較干凈。 利用算子模板可求得水平和垂直方向的梯度94a132aa-cbf1-11ec-bce3-dac502259ad0.png94c175b0-cbf1-11ec-bce3-dac502259ad0.png,再通過梯度合成便可獲得邊緣檢測結果94e8f5c2-cbf1-11ec-bce3-dac502259ad0.png,如下所示:

95066f9e-cbf1-11ec-bce3-dac502259ad0.png

有時,為了簡化運算,可以用下面式子來近似替代。

9526fad4-cbf1-11ec-bce3-dac502259ad0.png

Sobel邊緣檢測的過程如圖13所示,獲得了比較粗的邊界,但邊緣定位精度不夠高,,有時可能對非邊緣像素的響應大于某些邊緣處的響應或者響應差別不是很大,造成漏檢或誤檢。當對精度要求不是很高時,是一種較為常用的邊緣檢測方法。將邊緣檢測結果與原圖疊加便可以得到銳化后的圖像,如圖14所示。

9542d93e-cbf1-11ec-bce3-dac502259ad0.png

圖13 Sobel邊緣檢測

95639c96-cbf1-11ec-bce3-dac502259ad0.png

圖14 Sobel銳化

2.2.Sobel邊緣檢測Matlab實現(xiàn)

前面已經對Sobel邊緣檢測算法進行了介紹,現(xiàn)在基于Matlab軟件對其進行仿真。創(chuàng)建函數(shù)Sobel_Edge_Detector用于實現(xiàn)Sobel算子對圖像進行邊緣檢測,相關的matlab代碼如下所示(詳見Sobel_Edge_Detector.m)。

% 灰度圖像Sobel邊緣檢測算法實現(xiàn)

% IMG為輸入的灰度圖像

% Q為輸出的灰度圖像

function Q = Sobel_Edge_Detector(IMG)

[h,w] = size(IMG); % 獲取圖像的高度h和寬度w

Q = zeros(h,w); % 初始化Q為全0的h*w大小的圖像

% -------------------------------------------------------------------------

% Wx Wy Pixel

% [ -1 -2 -1 ] [ +1 0 -1] [ P1 P2 P3]

% [ 0 0 0 ] [ +2 0 -2] [ P4 P5 P6]

% [ +1 +2 +1 ] [ +1 0 -1] [ P7 P8 P9]

Wx = [-1,-2,-1;0,0,0;1,2,1]; % Weight x

Wy = [1,0,-1;2,0,-2;1,0,-1]; % Weight y

IMG = double(IMG);

for i = 1 : h

forj = 1 : w

if(i<2?|| i>h-1 || j<2 || j>w-1)

Q(i,j)= 0; % 邊緣像素不處理

else

%Gx = sum(Wx.*IMG(i-1:i+1,j-1:j+1),'all');

Gx= Wx(1,1)*IMG(i-1,j-1) + Wx(1,2)*IMG(i-1,j) + Wx(1,3)*IMG(i-1,j+1) +...

Wx(2,1)*IMG(i ,j-1)+ Wx(2,2)*IMG(i ,j) + Wx(2,3)*IMG(i ,j+1) +...

Wx(3,1)*IMG(i+1,j-1)+ Wx(3,2)*IMG(i+1,j) + Wx(3,3)*IMG(i+1,j+1);

%Gy = sum(Wy.*IMG(i-1:i+1,j-1:j+1),'all');

Gy= Wy(1,1)*IMG(i-1,j-1) + Wy(1,2)*IMG(i-1,j) + Wy(1,3)*IMG(i-1,j+1) +...

Wy(2,1)*IMG(i ,j-1)+ Wy(2,2)*IMG(i ,j) + Wy(2,3)*IMG(i ,j+1) +...

Wy(3,1)*IMG(i+1,j-1)+ Wy(3,2)*IMG(i+1,j) + Wy(3,3)*IMG(i+1,j+1);

%Q(i,j) = sqrt(Gx^2 + Gy^2);

Q(i,j)= abs(Gx) + abs(Gy);

end

end

end

Q=uint8(Q);

上述Matlab代碼中需要注意以下幾點:

(1)函數(shù)輸入IMG是uint8數(shù)據(jù)類型的圖像,而計算時存在負數(shù)和小數(shù),需要用浮點數(shù)來表示,所以將IMG由uint8數(shù)據(jù)類型轉為double數(shù)據(jù)類型;

(2)對圖像邊緣的像素不進行處理,直接輸出0;

(3)將函數(shù)輸出Q由double數(shù)據(jù)類型轉為uint8數(shù)據(jù)類型。

接下來編寫頂層M文件,相關的Maltab代碼如下所示(詳見Sobel_Sharpen_Test.m),Sobel銳化處理流程如圖15所示。

clear all;

close all;

clc;

% -------------------------------------------------------------------------

% Read PC image to Matlab

IMG1 = imread('../../0_images/Lenna.jpg'); % 讀取jpg圖像

IMG1 = rgb2gray(IMG1);

subplot(131);imshow(IMG1);title('【1】原圖');

% -------------------------------------------------------------------------

IMG2 = Sobel_Edge_Detector(IMG1);

subplot(132);imshow(IMG2);title('【2】Sobel邊緣檢測結果');

% -------------------------------------------------------------------------

IMG3 = IMG1 + IMG2;

subplot(133);imshow(IMG3);title('【3】Sobel銳化圖像');

958320f2-cbf1-11ec-bce3-dac502259ad0.png

圖15 Sobel銳化處理流程

執(zhí)行頂層M文件可得到圖16所示的結果,其中【2】是進行Sobel邊緣檢測得到的效果圖,可以看出Sobel算子對邊緣有較強的響應,與Robert算子相比,對邊緣的響應更加強烈,得到的邊緣更加寬;【3】是原圖與邊緣檢測結果疊加后的效果圖,相比原圖,邊緣和細節(jié)更加突出,但圖像有些失真。

95a20db4-cbf1-11ec-bce3-dac502259ad0.png

圖16 Sobel邊緣檢測與銳化

審核編輯 :李倩


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4701

    瀏覽量

    94853
  • 邊緣檢測
    +關注

    關注

    0

    文章

    94

    瀏覽量

    18383
  • sobel
    +關注

    關注

    0

    文章

    12

    瀏覽量

    8027

原文標題:常用銳化算法及Sobel銳化的介紹

文章出處:【微信號:HXSLH1010101010,微信公眾號:FPGA技術江湖】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    求教求教,紅外圖像銳化

    求教關于數(shù)字圖像處理方面,尤其是圖像銳化方面的大神呢。有重謝的啦
    發(fā)表于 04-01 16:36

    DSP c6722 圖像銳化

    求LOG算子,canny算子 ,Roberts算子,梯度算子銳化程序。跪謝
    發(fā)表于 05-12 10:14

    基于FPGA的圖像拉普拉斯銳化處理

    時,此中心像素的灰度應被進一步提高,以此實現(xiàn)圖像的銳化處理。2.2拉普拉斯(laplace)算子最常用的無方向性的二階差分算子,其模板有3*3、5*5和7*7等多種形式。。例如,以3*3算子為例,1~8
    發(fā)表于 07-08 18:15

    8168采集圖像直接播放銳化嚴重該怎么辦?

    我們的設備 采集和編碼解碼后 圖像正常但是采集后 經過一次dup 一次swms 在播放后 發(fā)現(xiàn)圖像銳化嚴重 尤其是物體邊緣 非常的模糊 噪點很多如何解決這種問題?為什么出現(xiàn)此問題?
    發(fā)表于 08-26 13:50

    玩轉Zynq連載45——[ex64] MT9V034攝像頭的圖像拉普拉斯銳化處理

    ,以此實現(xiàn)圖像的銳化處理。2.2拉普拉斯(laplace)算子最常用的無方向性的二階差分算子,其模板有3*3、5*5和7*7等多種形式。。例如,以3*3算子為例,1~8像素是(x,y)點周圍鄰近的8個
    發(fā)表于 12-26 09:13

    源碼交流=圖像處理 實現(xiàn)圖像去噪、濾波、銳化、邊緣檢測

    均衡化、銳化、邊緣檢測【處理效果】NO.1:原圖NO.2:去噪之后的圖像NO.3:銳化之后的圖像NO.4:直方圖均衡之后的圖像NO.5:Prewitt邊緣檢測之后的圖像NO.6:Roberts邊緣檢測
    發(fā)表于 04-01 19:03

    銳化圖像的MATLAB實現(xiàn)

    銳化圖像的MATLAB實現(xiàn)
    發(fā)表于 05-06 13:14

    基于拉普拉斯算法的圖像銳化算法實現(xiàn)

    該文提出了一種基于拉普拉斯算法的圖像銳化方法,并在DSP上實現(xiàn)其算法。首先研究拄普拉斯算子銳化圖像的基本原理,并推導出圖像銳化的拉普拉斯算子
    發(fā)表于 10-12 16:22 ?79次下載
    基于拉普拉斯<b class='flag-5'>算法</b>的圖像<b class='flag-5'>銳化</b><b class='flag-5'>算法</b>實現(xiàn)

    JAVA教程之模糊與銳化

    JAVA教程之模糊與銳化,很好的JAVA的資料,快來學習吧
    發(fā)表于 04-11 17:28 ?7次下載

    基于DSP_FPGA的紅外圖像銳化算法的實現(xiàn)

    基于DSPFPGA的紅外圖像銳化算法的實現(xiàn),感興趣的可以看看。
    發(fā)表于 08-29 15:31 ?8次下載

    基于CORDIC的高速Sobel算法實現(xiàn)

    為提高圖像邊緣檢測的處理速度,提出一種基于CORDIC的高速Sobel算法實現(xiàn)。
    的頭像 發(fā)表于 10-05 09:54 ?3779次閱讀
    基于CORDIC的高速<b class='flag-5'>Sobel</b><b class='flag-5'>算法</b>實現(xiàn)

    如何使用DSP和FPGA實現(xiàn)紅外圖像銳化算法的實現(xiàn)

    為了改善紅外圖像的成像質量,根據(jù)紅外圖像的特點,提出了一種改進的拉普拉斯銳化算法——受限拉普拉斯銳化算法,并采用DSP+FPGA的架構進行實時處理。對普通拉氏
    發(fā)表于 01-25 16:04 ?6次下載
    如何使用DSP和FPGA實現(xiàn)紅外圖像<b class='flag-5'>銳化</b><b class='flag-5'>算法</b>的實現(xiàn)

    基于擴展相位拉伸變換的血管造影圖像銳化

    針對目前傳統(tǒng)血管造影圖像銳化増強后大量細小血管變得模糊不清或丟失,甚至增強圖像中血管周圍產生大量背景噪聲,提岀一種相位拉伸核函數(shù),形成基于擴展相位拉伸變換的血管造影圖像増強算法。該算法將S?型群延遲
    發(fā)表于 04-21 14:00 ?8次下載
    基于擴展相位拉伸變換的血管造影圖像<b class='flag-5'>銳化</b>

    Sobel邊緣檢測與銳化的實現(xiàn)

    效果的影響,需要利用圖像銳化技術,使圖像的邊緣變得清晰。圖像銳化處理主要有兩個目的:一是與圖像平滑處理相反,增強圖像邊緣,使模糊的圖像更加清晰,顏色變得鮮明突出,圖像的質量有所改善,產生更適合人觀察
    的頭像 發(fā)表于 03-21 13:17 ?3218次閱讀

    圖像銳化Sobel、Laplacian算子基礎知識介紹

    Sobel 算子是一種用于邊緣檢測的離散微分算子,它結合了高斯平滑和微分求導
    的頭像 發(fā)表于 09-13 09:52 ?2506次閱讀
    圖像<b class='flag-5'>銳化</b>的<b class='flag-5'>Sobel</b>、Laplacian算子基礎知識<b class='flag-5'>介紹</b>
    主站蜘蛛池模板: 欲妇放荡叫床很浪的小说 | 亚洲图片 欧美色图 | 天天视频色 | 4hu44四虎在线观看 | 色综合欧美| 操美女在线看 | 人人插人人 | 亚洲国内精品自在线影视 | 黄色h网站| 亚洲三级视频在线观看 | 悠悠影院欧美日韩国产 | 黄网免费看 | h视频在线观看免费网站 | 色综合网天天综合色中文男男 | 国产精品女仆装在线播放 | 久久久噜噜噜久久网 | 亚洲免费色图 | 一本高清在线 | 久久综合色综合 | 直接黄91麻豆网站 | 夜夜夜夜夜夜夜猛噜噜噜噜噜噜 | 成人在线a | 欧美一区福利 | 韩国xxxxx视频在线 | 色涩网站在线观看 | 天天综合网天天做天天受 | 午夜影视福利 | 国产69久久精品成人看 | 亚洲怡红院在线 | 免费一级在线观看 | 天堂资源在线官网bt | 国产伦精品一区二区三区免费 | 国产小视频在线看 | 中文字幕三级久久久久久 | 日本不卡在线观看免费v | 色涩网站在线观看 | 成人三级影院 | 亚洲成人高清在线观看 | 亚洲免费视频网 | 成人伊人电影 | 国产成人乱码一区二区三区 |