在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

17個機器學(xué)習(xí)的常用算法

恬靜簡樸1 ? 來源:恬靜簡樸1 ? 作者:恬靜簡樸1 ? 2022-08-11 11:20 ? 次閱讀

根據(jù)數(shù)據(jù)類型的不同,對一個問題的建模有不同的方式。在機器學(xué)習(xí)或者人工智能領(lǐng)域,人們首先會考慮算法的學(xué)習(xí)方式。在機器學(xué)習(xí)領(lǐng)域,有幾種主要的學(xué)習(xí)方式。將算法按照學(xué)習(xí)方式分類是一個不錯的想法,這樣可以讓人們在建模和算法選擇的時候考慮能根據(jù)輸入數(shù)據(jù)來選擇最合適的算法來獲得最好的結(jié)果。

1. 監(jiān)督式學(xué)習(xí):

監(jiān)督式學(xué)習(xí)(英語:Supervised learning),是一個機器學(xué)習(xí)中的方法,可以由訓(xùn)練資料中學(xué)到或建立一個模式(函數(shù) / learning model),并依此模式推測新的實例。訓(xùn)練資料是由輸入物件(通常是向量)和預(yù)期輸出所組成。函數(shù)的輸出可以是一個連續(xù)的值(稱為回歸分析),或是預(yù)測一個分類標(biāo)簽(稱作分類)。

一個監(jiān)督式學(xué)習(xí)者的任務(wù)在觀察完一些訓(xùn)練范例(輸入和預(yù)期輸出)后,去預(yù)測這個函數(shù)對任何可能出現(xiàn)的輸入的值的輸出。要達到此目的,學(xué)習(xí)者必須以"合理"的方式從現(xiàn)有的資料中一般化到非觀察到的情況。在人類和動物感知中,則通常被稱為概念學(xué)習(xí)(concept learning)。

2. 非監(jiān)督式學(xué)習(xí):

在非監(jiān)督式學(xué)習(xí)中,數(shù)據(jù)并不被特別標(biāo)識,學(xué)習(xí)模型是為了推斷出數(shù)據(jù)的一些內(nèi)在結(jié)構(gòu)。常見的應(yīng)用場景包括關(guān)聯(lián)規(guī)則的學(xué)習(xí)以及聚類等。常見算法包括Apriori算法以及k-Means算法。

3. 半監(jiān)督式學(xué)習(xí):

在此學(xué)習(xí)方式下,輸入數(shù)據(jù)部分被標(biāo)識,部分沒有被標(biāo)識,這種學(xué)習(xí)模型可以用來進行預(yù)測,但是模型首先需要學(xué)習(xí)數(shù)據(jù)的內(nèi)在結(jié)構(gòu)以便合理的組織數(shù)據(jù)來進行預(yù)測。應(yīng)用場景包括分類和回歸,算法包括一些對常用監(jiān)督式學(xué)習(xí)算法的延伸,這些算法首先試圖對未標(biāo)識數(shù)據(jù)進行建模,在此基礎(chǔ)上再對標(biāo)識的數(shù)據(jù)進行預(yù)測。如圖論推理算法(Graph Inference)或者拉普拉斯支持向量機(Laplacian SVM.)等。

4. 強化學(xué)習(xí):

在這種學(xué)習(xí)模式下,輸入數(shù)據(jù)作為對模型的反饋,不像監(jiān)督模型那樣,輸入數(shù)據(jù)僅僅是作為一個檢查模型對錯的方式,在強化學(xué)習(xí)下,輸入數(shù)據(jù)直接反饋到模型,模型必須對此立刻作出調(diào)整。常見的應(yīng)用場景包括動態(tài)系統(tǒng)以及機器人控制等。常見算法包括Q-Learning以及時間差學(xué)習(xí)(Temporal difference learning)

5. 算法類似性

根據(jù)算法的功能和形式的類似性,我們可以把算法分類,比如說基于樹的算法,基于神經(jīng)網(wǎng)絡(luò)的算法等等。當(dāng)然,機器學(xué)習(xí)的范圍非常龐大,有些算法很難明確歸類到某一類。而對于有些分類來說, 同一分類的算法可以針對不同類型的問題。這里,我們盡量把常用的算法按照最容易理解的方式進行分類。

6. 回歸算法:

回歸算法是試圖采用對誤差的衡量來探索變量之間的關(guān)系的一類算法。回歸算法是統(tǒng)計機器學(xué)習(xí)的利器。在機器學(xué)習(xí)領(lǐng)域,人們說起回歸,有時候是指一類問題,有時候是指一類算法,這一點常常會使初學(xué)者有所困惑。常見的回歸算法包括:最小二乘法(Ordinary Least Square),邏輯回歸(Logistic Regression),逐步式回歸(Stepwise Regression),多元自適應(yīng)回歸樣條(Multivariate Adaptive Regression Splines)以及本地散點平滑估計(Locally Estimated Scatterplot Smoothing)

7. 基于實例的算法

基于實例的算法常常用來對決策問題建立模型,這樣的模型常常先選取一批樣本數(shù)據(jù),然后根據(jù)某些近似性把新數(shù)據(jù)與樣本數(shù)據(jù)進行比較。通過這種方式來尋找最佳的匹配。因此,基于實例的算法常常也被稱為“贏家通吃”學(xué)習(xí)或者“基于記憶的學(xué)習(xí)”。常見的算法包括 k-Nearest Neighbor(KNN), 學(xué)習(xí)矢量量化(Learning Vector Quantization, LVQ),以及自組織映射算法(Self-Organizing Map , SOM)。

8. 正則化方法

正則化方法是其他算法(通常是回歸算法)的延伸,根據(jù)算法的復(fù)雜度對算法進行調(diào)整。正則化方法通常對簡單模型予以獎勵而對復(fù)雜算法予以懲罰。常見的算法包括:Ridge Regression,Least Absolute Shrinkage and Selection Operator(LASSO),以及彈性網(wǎng)絡(luò)(Elastic Net)。

9. 決策樹學(xué)習(xí)

決策樹算法根據(jù)數(shù)據(jù)的屬性采用樹狀結(jié)構(gòu)建立決策模型, 決策樹模型常常用來解決分類和回歸問題。常見的算法包括:分類及回歸樹(Classification And Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 隨機森林(Random Forest), 多元自適應(yīng)回歸樣條(MARS)以及梯度推進機(Gradient Boosting Machine, GBM)

10. 貝葉斯方法

貝葉斯方法算法是基于貝葉斯定理的一類算法,主要用來解決分類和回歸問題。常見算法包括:樸素貝葉斯算法,平均單依賴估計(Averaged One-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN)。

11. 基于核的算法

基于核的算法中最著名的莫過于支持向量機(SVM)了。基于核的算法把輸入數(shù)據(jù)映射到一個高階的向量空間, 在這些高階向量空間里, 有些分類或者回歸問題能夠更容易的解決。常見的基于核的算法包括:支持向量機(Support Vector Machine, SVM), 徑向基函數(shù)(Radial Basis Function ,RBF), 以及線性判別分析(Linear Discriminate Analysis ,LDA)等。

12.聚類算法

聚類,就像回歸一樣,有時候人們描述的是一類問題,有時候描述的是一類算法。聚類算法通常按照中心點或者分層的方式對輸入數(shù)據(jù)進行歸并。所以的聚類算法都試圖找到數(shù)據(jù)的內(nèi)在結(jié)構(gòu),以便按照最大的共同點將數(shù)據(jù)進行歸類。常見的聚類算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM)。

13. 關(guān)聯(lián)規(guī)則學(xué)習(xí)

關(guān)聯(lián)規(guī)則學(xué)習(xí)通過尋找最能夠解釋數(shù)據(jù)變量之間關(guān)系的規(guī)則,來找出大量多元數(shù)據(jù)集中有用的關(guān)聯(lián)規(guī)則。常見算法包括 Apriori算法和Eclat算法等。

14. 人工神經(jīng)網(wǎng)絡(luò)

人工神經(jīng)網(wǎng)絡(luò)算法模擬生物神經(jīng)網(wǎng)絡(luò),是一類模式匹配算法。通常用于解決分類和回歸問題。人工神經(jīng)網(wǎng)絡(luò)是機器學(xué)習(xí)的一個龐大的分支,有幾百種不同的算法。(其中深度學(xué)習(xí)就是其中的一類算法,我們會單獨討論),重要的人工神經(jīng)網(wǎng)絡(luò)算法包括:感知器神經(jīng)網(wǎng)絡(luò)(Perceptron Neural Network), 反向傳遞(Back Propagation), Hopfield網(wǎng)絡(luò),自組織映射(Self-Organizing Map, SOM)。學(xué)習(xí)矢量量化(Learning Vector Quantization, LVQ)。

15. 深度學(xué)習(xí)

深度學(xué)習(xí)算法是對人工神經(jīng)網(wǎng)絡(luò)的發(fā)展。在近期贏得了很多關(guān)注, 特別是百度也開始發(fā)力深度學(xué)習(xí)后, 更是在國內(nèi)引起了很多關(guān)注。在計算能力變得日益廉價的今天,深度學(xué)習(xí)試圖建立大得多也復(fù)雜得多的神經(jīng)網(wǎng)絡(luò)。很多深度學(xué)習(xí)的算法是半監(jiān)督式學(xué)習(xí)算法,用來處理存在少量未標(biāo)識數(shù)據(jù)的大數(shù)據(jù)集。常見的深度學(xué)習(xí)算法包括:受限波爾茲曼機(Restricted Boltzmann Machine, RBN), Deep Belief Networks(DBN),卷積網(wǎng)絡(luò)(Convolutional Network), 堆棧式自動編碼器(Stacked Auto-encoders)。

16. 降低維度算法

像聚類算法一樣,降低維度算法試圖分析數(shù)據(jù)的內(nèi)在結(jié)構(gòu),不過降低維度算法是以非監(jiān)督學(xué)習(xí)的方式試圖利用較少的信息來歸納或者解釋數(shù)據(jù)。這類算法可以用于高維數(shù)據(jù)的可視化或者用來簡化數(shù)據(jù)以便監(jiān)督式學(xué)習(xí)使用。

常見的算法包括:主成份分析(Principle Component Analysis, PCA),偏最小二乘回歸(Partial Least Square Regression,PLS), Sammon映射,多維尺度(Multi-Dimensional Scaling, MDS), 投影追蹤(Projection Pursuit)等。

17. 集成算法:

集成算法用一些相對較弱的學(xué)習(xí)模型獨立地就同樣的樣本進行訓(xùn)練,然后把結(jié)果整合起來進行整體預(yù)測。集成算法的主要難點在于究竟集成哪些獨立的較弱的學(xué)習(xí)模型以及如何把學(xué)習(xí)結(jié)果整合起來。

這是一類非常強大的算法,同時也非常流行。常見的算法包括:Boosting, Bootstrapped Aggregation(Bagging), AdaBoost,堆疊泛化(Stacked Generalization, Blending),梯度推進機(Gradient Boosting Machine, GBM),隨機森林(Random Forest)。

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4631

    瀏覽量

    93423
  • 人工智能
    +關(guān)注

    關(guān)注

    1796

    文章

    47789

    瀏覽量

    240548
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8446

    瀏覽量

    133123
收藏 人收藏

    評論

    相關(guān)推薦

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學(xué)習(xí) AI,機器學(xué)習(xí)算法

    前言 由于本人最近在學(xué)習(xí)一些機器算法,AI 算法的知識,需要搭建一學(xué)習(xí)環(huán)境,所以就在最近購買的
    的頭像 發(fā)表于 01-02 13:43 ?160次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學(xué)習(xí)</b> AI,<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>

    傳統(tǒng)機器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一強大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?418次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    NPU與機器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?632次閱讀

    【每天學(xué)點AI】KNN算法:簡單有效的機器學(xué)習(xí)分類器

    過程,其實就是一簡單的分類問題,而KNN(K-NearestNeighbors)算法正是模仿這種人類決策過程的機器學(xué)習(xí)算法。|什么是KNN
    的頭像 發(fā)表于 10-31 14:09 ?435次閱讀
    【每天學(xué)點AI】KNN<b class='flag-5'>算法</b>:簡單有效的<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>分類器

    人工智能、機器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一很大的子集是機器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)
    發(fā)表于 10-24 17:22 ?2549次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    LIBS結(jié)合機器學(xué)習(xí)算法的江西名優(yōu)春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對象,研究激光誘導(dǎo)擊穿光譜結(jié)合機器學(xué)習(xí)的茶葉鑒別方法。將茶葉茶,水?dāng)?shù)據(jù)融合可有效鑒別春茶采收期,且數(shù)據(jù)融合后表現(xiàn)出更好的穩(wěn)定性和魯棒性,LIBS結(jié)合機器
    的頭像 發(fā)表于 10-22 18:05 ?322次閱讀
    LIBS結(jié)合<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>的江西名優(yōu)春茶采收期鑒別

    常用的ADC濾波算法有哪些

    ADC(模數(shù)轉(zhuǎn)換器)濾波算法在信號處理中起著至關(guān)重要的作用,它們能夠幫助我們提取出有用的信號,同時濾除噪聲和干擾。以下是常用的ADC濾波算法詳解,這些算法各具特色,適用于不同的應(yīng)用場景
    的頭像 發(fā)表于 10-08 14:35 ?553次閱讀

    深度學(xué)習(xí)算法在嵌入式平臺上的部署

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)算法在各個領(lǐng)域的應(yīng)用日益廣泛。然而,將深度學(xué)習(xí)算法部署到資源受限的嵌入式平臺上,仍然是一具有挑戰(zhàn)性的任
    的頭像 發(fā)表于 07-15 10:03 ?1757次閱讀

    深度學(xué)習(xí)的基本原理與核心算法

    處理、語音識別等領(lǐng)域取得了革命性的突破。本文將詳細闡述深度學(xué)習(xí)的原理、核心算法以及實現(xiàn)方式,并通過一具體的代碼實例進行說明。
    的頭像 發(fā)表于 07-04 11:44 ?2557次閱讀

    機器學(xué)習(xí)算法原理詳解

    機器學(xué)習(xí)作為人工智能的一重要分支,其目標(biāo)是通過讓計算機自動從數(shù)據(jù)中學(xué)習(xí)并改進其性能,而無需進行明確的編程。本文將深入解讀幾種常見的機器
    的頭像 發(fā)表于 07-02 11:25 ?1404次閱讀

    機器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時代的到來,數(shù)據(jù)量的爆炸性增長對數(shù)據(jù)分析提出了更高的要求。機器學(xué)習(xí)作為一種強大的工具,通過訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入探討機器
    的頭像 發(fā)表于 07-02 11:22 ?846次閱讀

    機器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一經(jīng)典數(shù)據(jù)集,在統(tǒng)計
    的頭像 發(fā)表于 06-27 08:27 ?1734次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典<b class='flag-5'>算法</b>與應(yīng)用

    名單公布!【書籍評測活動NO.35】如何用「時間序列與機器學(xué)習(xí)」解鎖未來?

    應(yīng)用,將理論基礎(chǔ)與實踐案例相結(jié)合,作者憑借扎實的數(shù)學(xué)功底及其在企業(yè)界的豐富實踐經(jīng)驗,將機器學(xué)習(xí)與時間序列分析巧妙融合在書中。 全書書共分為8章,系統(tǒng)介紹時間序列的基礎(chǔ)知識、常用預(yù)測方法、異常檢測
    發(fā)表于 06-25 15:00

    機器學(xué)習(xí)怎么進入人工智能

    ,人工智能已成為一熱門領(lǐng)域,涉及到多個行業(yè)和領(lǐng)域,例如語音識別、機器翻譯、圖像識別等。 在編程中進行人工智能的關(guān)鍵是使用機器學(xué)習(xí)算法,這是
    的頭像 發(fā)表于 04-04 08:41 ?399次閱讀

    機器學(xué)習(xí)8大調(diào)參技巧

    今天給大家一篇關(guān)于機器學(xué)習(xí)調(diào)參技巧的文章。超參數(shù)調(diào)優(yōu)是機器學(xué)習(xí)例程中的基本步驟之一。該方法也稱為超參數(shù)優(yōu)化,需要搜索超參數(shù)的最佳配置以實現(xiàn)最佳性能。
    的頭像 發(fā)表于 03-23 08:26 ?722次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>8大調(diào)參技巧
    主站蜘蛛池模板: 国产五月婷婷 | 国产午夜精品片一区二区三区 | 亚洲视频一二三 | 奇米狠狠干| 日本精品视频一视频高清 | xxxx 欧美| 嫩草影院入口一二三免费 | 精品国内视频 | 163黄页网又粗又长又舒服 | 天天爱天天做久久天天狠狼 | 午夜亚洲国产 | 台湾久久| 一级毛片一级毛片一级毛片aa | 国模极品一区二区三区 | 亚洲精品成人a在线观看 | 欧美 亚洲 国产 丝袜 在线 | 久久久久久久成人午夜精品福利 | 国产精品7m凸凹视频分类大全 | 亚洲国产成+人+综合 | 欧美大香a蕉免费 | 伊人久久大香线蕉综合网站 | 久色国产 | 久久精品国产99久久72 | 天天综合天天添夜夜添狠狠添 | 欧美zo| 欧美刺激午夜性久久久久久久 | 欧美亚洲专区 | 免费视频在线观看1 | 国产精品理论片在线观看 | 女人精aaaa片一级毛片女女 | 午夜视频在线免费观看 | 日韩在线天堂免费观看 | 中文字幕一区二区三区在线观看 | 亚洲国产成人精品青青草原100 | 天天射美女 | 黄网站免费大全 | 午夜剧j| 伊人亚洲综合网成人 | 午夜国产高清精品一区免费 | 国产午夜在线观看视频 | 在线观看精品视频看看播放 |