在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)實(shí)踐中的十條注意點(diǎn)

新機(jī)器視覺(jué) ? 來(lái)源:上海數(shù)據(jù)分析 ? 作者:上海數(shù)據(jù)分析 ? 2022-09-22 15:21 ? 次閱讀

對(duì)于開(kāi)發(fā)人員而言,基于云的機(jī)器學(xué)習(xí)工具帶來(lái)了使用機(jī)器學(xué)習(xí)創(chuàng)造和提供新的功能的可能性。然而,開(kāi)發(fā)者想要在它們的應(yīng)用程序中融入機(jī)器學(xué)習(xí),通常會(huì)犯一些錯(cuò)誤,本文列了十條注意點(diǎn)以饗讀者。

在提供發(fā)現(xiàn)埋藏?cái)?shù)據(jù)深層的模式的能力上,機(jī)器學(xué)習(xí)有著潛在的能力使得應(yīng)用程序更加的強(qiáng)大并且更能響應(yīng)用戶的需求。精心調(diào)校好的算法能夠從巨大的并且互不相同的數(shù)據(jù)源中提取價(jià)值,同時(shí)沒(méi)有人類思考和分析的限制。對(duì)于開(kāi)發(fā)者而言,機(jī)器學(xué)習(xí)為應(yīng)用業(yè)務(wù)的關(guān)鍵分析提供了希望,從而實(shí)現(xiàn)從改善客戶體驗(yàn)到提供產(chǎn)品推薦上升至超個(gè)性化內(nèi)容服務(wù)的任何應(yīng)用程序。

像Amazon和Micorosoft這樣的云供應(yīng)商提供云功能的機(jī)器學(xué)習(xí)解決方案,承諾為開(kāi)發(fā)者提供一個(gè)簡(jiǎn)單的方法,使得機(jī)器學(xué)習(xí)的能力能夠融入到他們的應(yīng)用程序當(dāng)中,這也算是最近的頭條新聞了。承諾似乎很好,但開(kāi)發(fā)者還需謹(jǐn)慎。

對(duì)于開(kāi)發(fā)人員而言,基于云的機(jī)器學(xué)習(xí)工具帶來(lái)了使用機(jī)器學(xué)習(xí)創(chuàng)造和提供新的功能的可能性。然而,當(dāng)我們使用不當(dāng)時(shí),這些工具會(huì)輸出不好的結(jié)果,用戶可能會(huì)因此而感到不安。測(cè)試過(guò)微軟年齡檢測(cè)機(jī)器學(xué)習(xí)工具( http://how-old.net/ )的人都會(huì)發(fā)現(xiàn),伴隨即插即用的易用性而來(lái)的是主要的精度問(wèn)題——對(duì)于關(guān)鍵應(yīng)用程序或者是重大決策,它應(yīng)該不值得信賴。

想要在應(yīng)用程序中成功地融入機(jī)器學(xué)習(xí)的開(kāi)發(fā)者,需要注意以下的一些關(guān)鍵要點(diǎn):

1.算法使用的數(shù)據(jù)越多,它的精度會(huì)更加準(zhǔn)確,所以如果可能要盡量避免抽樣

機(jī)器學(xué)習(xí)理論在預(yù)測(cè)誤差上有著非常直觀的描述。簡(jiǎn)而言之,在機(jī)器學(xué)習(xí)模型和最優(yōu)預(yù)測(cè)(在理論上達(dá)到最佳可能的誤差)之間的預(yù)測(cè)誤差的差距可以被分解為三個(gè)部分:

由于沒(méi)有找到正確函數(shù)形式的模型的誤差

由于沒(méi)有找到最佳參數(shù)的模型的誤差

由于沒(méi)用使用足夠數(shù)據(jù)的模型的誤差

如果訓(xùn)練集有限,它可能無(wú)法支撐解決這個(gè)問(wèn)題所需的模型復(fù)雜性。統(tǒng)計(jì)學(xué)的基本規(guī)律告訴我們,如果我們可以的話,應(yīng)該利用所有的數(shù)據(jù)而不是抽樣。

2. 對(duì)給定的問(wèn)題選擇效果最好的機(jī)器學(xué)習(xí)算法是決定成敗的關(guān)鍵

例如,梯度提升樹(shù)(GBT)是一個(gè)非常受歡迎的監(jiān)督學(xué)習(xí)算法,由于其精度而被業(yè)內(nèi)開(kāi)發(fā)人員廣泛使用。然而,盡管其高度受歡迎,我們也不能盲目的把這種算法應(yīng)用于任何問(wèn)題上。相反,我們使用的算法應(yīng)該是能夠最佳地?cái)M合數(shù)據(jù)特征同時(shí)能夠保證精度的算法。

為了證明這個(gè)觀點(diǎn),嘗試做這樣一個(gè)實(shí)驗(yàn),在數(shù)據(jù)集 the popular text categorization dataset rcv1上測(cè)試GBT算法和線性支持向量機(jī)(SVM)算法,并比較兩者的精度。我們觀察到在這個(gè)問(wèn)題上,就錯(cuò)誤率而言,線性SVM要優(yōu)于GBT算法。這是因?yàn)樵谖谋绢I(lǐng)域當(dāng)中,數(shù)據(jù)通常是高維的。一個(gè)線性分類器能夠在N-1維當(dāng)中完美的分離出N個(gè)樣本,所以,一個(gè)樣本模型在這種數(shù)據(jù)上通常表現(xiàn)的更好。此外,模型越簡(jiǎn)單,通過(guò)利用有限的訓(xùn)練樣本來(lái)避免過(guò)擬合的方式學(xué)習(xí)參數(shù),并且提供一個(gè)精確的模型,產(chǎn)生的問(wèn)題也會(huì)隨之越少。

另一方面,GBT是高度非線性的并且更加強(qiáng)大,但是在這種環(huán)境中卻更難學(xué)習(xí)并且更容易發(fā)生過(guò)擬合,往往結(jié)果精度也較低。

3. 為了得到一個(gè)更好的模型,必須選擇最佳的的算法和相關(guān)的參數(shù)

這對(duì)于非數(shù)據(jù)科學(xué)家而言可能不容易。現(xiàn)代的機(jī)器學(xué)習(xí)算法有許多的參數(shù)可以調(diào)整。例如,對(duì)于流行的GBT算法單獨(dú)的就有十二個(gè)參數(shù)可以設(shè)置,其中包括如何控制樹(shù)的大小,學(xué)習(xí)率,行或列的采樣方法,損失函數(shù),正則化選項(xiàng)等等。一個(gè)特有的項(xiàng)目需要在給定的數(shù)據(jù)集上為每一個(gè)參數(shù)找到其最優(yōu)值并且達(dá)到最精準(zhǔn)的精度,這確實(shí)不是一件容易的事。但是為了得到最佳的結(jié)果,數(shù)據(jù)科學(xué)家需要訓(xùn)練大量的模型,而直覺(jué)和經(jīng)驗(yàn)會(huì)幫助他們根據(jù)交叉驗(yàn)證的得分,然后決定使用什么參數(shù)再次嘗試。

4. 機(jī)器學(xué)習(xí)模型會(huì)隨著好的數(shù)據(jù)而變得更好,錯(cuò)誤的數(shù)據(jù)收集和數(shù)據(jù)處理會(huì)降低你建立預(yù)測(cè)和歸納的機(jī)器學(xué)習(xí)模型的能力

根據(jù)經(jīng)驗(yàn),建議仔細(xì)審查與主題相關(guān)的數(shù)據(jù),從而深入了解數(shù)據(jù)和幕后數(shù)據(jù)的生成過(guò)程。通常這個(gè)過(guò)程可以識(shí)別與記錄、特征、值或采樣相關(guān)的數(shù)據(jù)質(zhì)量問(wèn)題。

5. 理解數(shù)據(jù)特征并改進(jìn)它們(通過(guò)創(chuàng)造新的特征或者去掉某個(gè)特征)對(duì)預(yù)測(cè)能力有著高度的影響

機(jī)器學(xué)習(xí)的一個(gè)基本任務(wù)就是找到能夠被機(jī)器學(xué)習(xí)算法充分利用的豐富特征空間來(lái)替代原始數(shù)據(jù)。例如,特征轉(zhuǎn)換是一種流行的方法,可以通過(guò)在原始數(shù)據(jù)的基礎(chǔ)上使用數(shù)學(xué)上的轉(zhuǎn)換提取新的特征來(lái)實(shí)現(xiàn)。最后的特征空間(也就是最后用來(lái)描述數(shù)據(jù)的特征)要能更好的捕獲數(shù)據(jù)的多復(fù)雜性(如非線性和多種特征之間的相互作用),這對(duì)于成功的學(xué)習(xí)過(guò)程至關(guān)重要。

6. 在應(yīng)用中,選擇合適的靈感來(lái)自商業(yè)價(jià)值的目標(biāo)函數(shù)/損失函數(shù)對(duì)于最后的成功至關(guān)重要

幾乎所有的機(jī)器學(xué)習(xí)算法最后都被當(dāng)成是一種優(yōu)化問(wèn)題。根據(jù)業(yè)務(wù)的性質(zhì),合理設(shè)置或調(diào)整優(yōu)化的目標(biāo)函數(shù),是機(jī)器學(xué)習(xí)成功的關(guān)鍵。

以支持向量機(jī)為例,通過(guò)假設(shè)所有錯(cuò)誤類型的權(quán)重相等,對(duì)一個(gè)二分類問(wèn)題的泛化誤差進(jìn)行了優(yōu)化。這對(duì)損失敏感的問(wèn)題并不合適,如故障檢測(cè),其中某些類型的錯(cuò)誤比重可能比其它類型的要高。在這種情況下,建議通過(guò)在特定的錯(cuò)誤類型上,增加更多的懲罰來(lái)解釋它們的權(quán)重,從而調(diào)整SVM的損失函數(shù)。

7. 確保正確地處理訓(xùn)練數(shù)據(jù)和測(cè)試數(shù)據(jù)

如此當(dāng)在生產(chǎn)中部署該模型時(shí),測(cè)試數(shù)據(jù)能夠模擬輸入數(shù)據(jù)。例如,我們可以看到,這對(duì)于時(shí)間依賴性數(shù)據(jù)是多么的重要。在這種情況下,使用標(biāo)準(zhǔn)的交叉驗(yàn)證方法進(jìn)行訓(xùn)練,調(diào)整,那么測(cè)試模型的結(jié)果可能會(huì)有偏差,甚至?xí)粶?zhǔn)確。這是因?yàn)樵趯?shí)施平臺(tái)上它不能準(zhǔn)確的模擬輸入數(shù)據(jù)的性質(zhì)。為了糾正這一點(diǎn),在部署時(shí)我們必須仿照模型來(lái)部署使用。我們應(yīng)該使用一個(gè)基于時(shí)間的交叉驗(yàn)證,用時(shí)間較新的數(shù)據(jù)來(lái)驗(yàn)證訓(xùn)練模型。

8. 部署前理解模型的泛化誤差

泛化誤差衡量模型在未知數(shù)據(jù)上的性能好壞。因?yàn)橐粋€(gè)模型在訓(xùn)練數(shù)據(jù)上的性能好并不意味著它在未知的數(shù)據(jù)上的表現(xiàn)也好。一個(gè)精心設(shè)計(jì)的模擬實(shí)際部署使用的模型評(píng)估過(guò)程,是估計(jì)模型泛化誤差所需要的。

一不留心就很容易違反交叉驗(yàn)證的規(guī)則,并且也沒(méi)有一種顯而易見(jiàn)的方法來(lái)表現(xiàn)交叉驗(yàn)證的非正確性,通常在你試圖尋找快捷方式計(jì)算時(shí)發(fā)生。在任何模型部署之前,有必要仔細(xì)注意交叉驗(yàn)證的正確性,以獲得部署性能的科學(xué)評(píng)估。

9. 知道如何處理非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)

如文本、時(shí)間序列、空間、圖形或者圖像數(shù)據(jù)。大多數(shù)機(jī)器學(xué)習(xí)算法在處理特征空間中的數(shù)據(jù)時(shí),一個(gè)特征集代表一個(gè)對(duì)象,特征集的每一個(gè)元素都描述對(duì)象的一個(gè)特點(diǎn)。在實(shí)際當(dāng)中,數(shù)據(jù)引進(jìn)時(shí)并不是這種格式化的形式,往往來(lái)自于最原始的格式,并且最后都必須被改造成機(jī)器學(xué)習(xí)算法能夠識(shí)別的理想格式。比如,我們必須知道如何使用各種計(jì)算機(jī)視覺(jué)技術(shù)從圖像中提取特征或者如何將自然語(yǔ)言處理技術(shù)應(yīng)用于影片文本。

10. 學(xué)會(huì)將商業(yè)問(wèn)題轉(zhuǎn)換成機(jī)器學(xué)習(xí)算法

一些重要的商業(yè)問(wèn)題,比如欺詐檢測(cè)、產(chǎn)品推薦、廣告精準(zhǔn)投放,都有“標(biāo)準(zhǔn)”的機(jī)器學(xué)習(xí)表達(dá)形式并且在實(shí)踐當(dāng)中取得了合理的成就。即使對(duì)于這些眾所周知的問(wèn)題,也還有鮮為人知但功能更強(qiáng)大的表達(dá)形式,從而帶來(lái)更高的預(yù)測(cè)精度。對(duì)于一般在博客和論壇中討論的小實(shí)例的商業(yè)問(wèn)題,適當(dāng)?shù)臋C(jī)器學(xué)習(xí)方法則不太明顯。

如果你是一個(gè)開(kāi)發(fā)者,學(xué)習(xí)這十個(gè)通往成功的訣竅可能似乎是一個(gè)艱難的任務(wù),但是不要?dú)怵H。事實(shí)上,開(kāi)發(fā)者不是數(shù)據(jù)科學(xué)家。認(rèn)為開(kāi)發(fā)人員可以充分利用所有的機(jī)學(xué)習(xí)工具是不公平的。但是這并不意味著開(kāi)發(fā)人員沒(méi)有機(jī)會(huì)去學(xué)習(xí)一些有水準(zhǔn)的數(shù)據(jù)科學(xué)從而改進(jìn)他們的應(yīng)用。隨著適當(dāng)?shù)钠髽I(yè)解決方案和自動(dòng)化程度的提高,開(kāi)發(fā)人員可以做模型構(gòu)建到實(shí)施部署的一切事情,使用機(jī)器學(xué)習(xí)最佳實(shí)踐來(lái)保持高精度

自動(dòng)化是在應(yīng)用程序中擴(kuò)展機(jī)器學(xué)習(xí)的關(guān)鍵。即使你能夠供得起一批小的數(shù)據(jù)科學(xué)家團(tuán)隊(duì)和開(kāi)發(fā)者攜手合作,也沒(méi)有足夠的人才。像Skytree的AutoModel(自動(dòng)化模型)能夠幫助開(kāi)發(fā)者自動(dòng)地確定最佳的參數(shù)并且使得算法得到最大的模型精度。一個(gè)易于使用的接口可以引導(dǎo)開(kāi)發(fā)人員通過(guò)訓(xùn)練加工,調(diào)整并且測(cè)試模型來(lái)防止統(tǒng)計(jì)上的錯(cuò)誤。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4694

    瀏覽量

    94571
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3477

    瀏覽量

    49922
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8485

    瀏覽量

    133973

原文標(biāo)題:機(jī)器學(xué)習(xí)實(shí)踐中的10個(gè)小秘訣!

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】視覺(jué)實(shí)現(xiàn)的基礎(chǔ)算法的應(yīng)用

    : 一、機(jī)器人視覺(jué):從理論到實(shí)踐 第7章詳細(xì)介紹了ROS2在機(jī)器視覺(jué)領(lǐng)域的應(yīng)用,涵蓋了相機(jī)標(biāo)定、OpenCV集成、視覺(jué)巡線、二維碼識(shí)別以及深度學(xué)習(xí)目標(biāo)檢測(cè)等內(nèi)容。通過(guò)
    發(fā)表于 05-03 19:41

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】機(jī)器人入門的引路書(shū)

    的限制和調(diào)控) 本書(shū)還有很多前沿技術(shù)項(xiàng)目的擴(kuò)展 比如神經(jīng)網(wǎng)絡(luò)識(shí)別例程,機(jī)器學(xué)習(xí)圖像識(shí)別的原理,yolo圖像追蹤的原理 機(jī)器學(xué)習(xí)訓(xùn)練三大點(diǎn)
    發(fā)表于 04-30 01:05

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】+ROS2應(yīng)用案例

    的知識(shí),還需要對(duì)ROS 2的節(jié)點(diǎn)通信和數(shù)據(jù)處理有一定的了解。通過(guò)實(shí)踐這一部分內(nèi)容,我掌握了如何在ROS 2實(shí)現(xiàn)二維碼識(shí)別,這對(duì)于提高機(jī)器人的智能性和交互性具有重要意義。 地圖構(gòu)建:SLAM技術(shù)
    發(fā)表于 04-27 11:42

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】+內(nèi)容初識(shí)

    《ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐》內(nèi)容閱讀初體驗(yàn) 《ROS 2 智能機(jī)器人開(kāi)發(fā)實(shí)踐》是一本針對(duì) ROS 2(Robot Operating System 2)這一先進(jìn)
    發(fā)表于 04-27 11:24

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.58】ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐

    ”社區(qū)負(fù)責(zé)人李喬龍老師共同撰寫(xiě)了這本500頁(yè)的機(jī)器人入門者案頭手冊(cè)——《ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐》一書(shū)! 本書(shū)匯聚了作者過(guò)去幾年的機(jī)器
    發(fā)表于 03-03 14:18

    繼電器測(cè)試的培訓(xùn)和學(xué)習(xí)資源有哪些推薦?

    地理解和應(yīng)用繼電器測(cè)試技術(shù)。 實(shí)踐操作:除了理論學(xué)習(xí)實(shí)踐操作也是掌握繼電器測(cè)試技能的重要途徑。可以通過(guò)參加實(shí)際的工程項(xiàng)目或者實(shí)驗(yàn)室實(shí)踐來(lái)積累經(jīng)驗(yàn)。在
    發(fā)表于 12-04 16:35

    eda在機(jī)器學(xué)習(xí)的應(yīng)用

    機(jī)器學(xué)習(xí)項(xiàng)目中,數(shù)據(jù)預(yù)處理和理解是成功構(gòu)建模型的關(guān)鍵。探索性數(shù)據(jù)分析(EDA)是這一過(guò)程不可或缺的一部分。 1. 數(shù)據(jù)清洗 數(shù)據(jù)清洗 是機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 11-13 10:42 ?719次閱讀

    嵌入式學(xué)習(xí)建議

    原理的嵌入式操作系統(tǒng)進(jìn)行學(xué)習(xí)。不要一開(kāi)始就學(xué)習(xí)幾種操作系統(tǒng),理解了基本原理,實(shí)踐中確有實(shí)際需要再學(xué)習(xí)也不遲。人總是要不斷學(xué)習(xí)的。 ⑨關(guān)于匯
    發(fā)表于 10-22 11:41

    RTOS開(kāi)發(fā)最佳實(shí)踐

    基于RTOS編寫(xiě)應(yīng)用程序時(shí),有一些要注意事項(xiàng)。在本節(jié),您將學(xué)習(xí)RTOS開(kāi)發(fā)最佳實(shí)踐,例如POSIX合規(guī)性、安全性和功能安全認(rèn)證。
    的頭像 發(fā)表于 08-20 11:24 ?738次閱讀

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 鳥(niǎo)瞰這本書(shū)

    清晰,從時(shí)間序列分析的基礎(chǔ)理論出發(fā),逐步深入到機(jī)器學(xué)習(xí)算法在時(shí)間序列預(yù)測(cè)的應(yīng)用,內(nèi)容全面,循序漸進(jìn)。每一章都經(jīng)過(guò)精心設(shè)計(jì),對(duì)理論知識(shí)進(jìn)行了詳細(xì)的闡述,對(duì)實(shí)際案例進(jìn)行了生動(dòng)的展示,使讀者在理論與
    發(fā)表于 08-12 11:28

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 簡(jiǎn)單建議

    簡(jiǎn)單評(píng)價(jià)這本書(shū)。 是這樣,在閱讀與實(shí)踐過(guò)程,我也發(fā)現(xiàn)了一些可以進(jìn)一步提升用戶體驗(yàn)的細(xì)節(jié)之處。 例如,書(shū)中大量的代碼示例對(duì)于學(xué)習(xí)者來(lái)說(shuō)無(wú)疑是寶貴的資源,但在快速?gòu)?fù)制粘貼的過(guò)程,偶爾會(huì)
    發(fā)表于 08-12 11:21

    Autobots應(yīng)用探索:實(shí)踐中的思考與發(fā)現(xiàn)

    背景 背景1:作為一名測(cè)試,日常工作必不可少的幾個(gè)環(huán)節(jié)是查看需求文檔、編寫(xiě)測(cè)試用例、處理線上問(wèn)題、能力提升等,基于集團(tuán)的https://xxx.jd.com/工具能一次性幫我們把這些事情都做
    的頭像 發(fā)表于 07-16 15:00 ?440次閱讀
    Autobots應(yīng)用探索:<b class='flag-5'>實(shí)踐中</b>的思考與發(fā)現(xiàn)

    機(jī)器學(xué)習(xí)的數(shù)據(jù)分割方法

    機(jī)器學(xué)習(xí),數(shù)據(jù)分割是一項(xiàng)至關(guān)重要的任務(wù),它直接影響到模型的訓(xùn)練效果、泛化能力以及最終的性能評(píng)估。本文將從多個(gè)方面詳細(xì)探討機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-10 16:10 ?2875次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析的應(yīng)用

    隨著大數(shù)據(jù)時(shí)代的到來(lái),數(shù)據(jù)量的爆炸性增長(zhǎng)對(duì)數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過(guò)訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入探討機(jī)器
    的頭像 發(fā)表于 07-02 11:22 ?1195次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)機(jī)器
    的頭像 發(fā)表于 06-27 08:27 ?1919次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典算法與應(yīng)用
    主站蜘蛛池模板: 中文字幕不卡一区 | 欧美日韩一卡2卡三卡4卡新区 | 美女扒开尿口给男人桶爽视频 | 男人操女人视频网站 | 久久中文字幕综合婷婷 | 精品三级内地国产在线观看 | 亚洲五月六月丁香激情 | 亚洲国产一区二区三区在线观看 | 久久婷婷国产综合精品 | 天堂资源在线种子资源 | 网站在线你懂的 | a毛片免费观看完整 | 免费看国产精品久久久久 | 四虎新地址4hu 你懂的 | 亚洲综合在线一区 | 人人玩人人弄人人曰 | 五月婷婷在线观看 | 狠狠五月天| 在线播放 你懂的 | 国产成人经典三级在线观看 | 人人看人人看人做人人模 | 欧美亚洲啪啪 | 久久老色鬼天天综合网观看 | 一级黄色录像毛片 | 国产午夜精品久久久久免费视 | semimi亚洲综合在线观看 | 国产精品你懂的在线播放 | 日韩手机看片 | 福利视频午夜 | 六月天丁香婷婷 | 国产伦精一区二区三区 | 诱人的老师bd高清日本在线观看 | 久久大尺度 | 亚洲视频二 | 精品噜噜噜噜久久久久久久久 | a一级黄 | 亚洲天堂.com | 午夜影院亚洲 | 五月激情网站 | 亚洲美女视频一区 | bt 另类 专区 欧美 制服 |