在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

FRNet:上下文感知的特征強(qiáng)化模塊

深度學(xué)習(xí)自然語言處理 ? 來源:深度學(xué)習(xí)自然語言處理 ? 作者:汪方野 ? 2022-11-24 11:24 ? 次閱讀

論文標(biāo)題:Enhancing CTR Prediction with Context-Aware Feature Representation Learning

收錄會議:

SIGIR 2022

論文鏈接:

https://arxiv.org/abs/2204.08758

簡介與主要貢獻(xiàn)

目前大多數(shù)提升點(diǎn)擊率預(yù)估效果的模型主要是通過建模特征交互,但是如何設(shè)計有效的特征交互結(jié)構(gòu)需要設(shè)計人員對數(shù)據(jù)特點(diǎn)以及結(jié)構(gòu)設(shè)計等方面有很強(qiáng)的要求。目前的以建模特征交互為主的模型可以總結(jié)為三層范式:embedding layer, feature interaction layer, 以及 prediction layer。大多數(shù)論文改進(jìn)集中在 Featrue interaction layer。

eab4ef38-6ba6-11ed-8abf-dac502259ad0.png

然而大部分的模型都存在一個問題:對于一個相同的特征,他們僅僅學(xué)到了一個固定的特征表示,而沒有考慮到這個特征在不同實例中不同上下文環(huán)境下的重要性。例如實例 1:{female, white, computer, workday} 和實例 2:{female, red, lipstick, workday} 中,特征 “female” 在這兩個實例中的重要性(對最后的預(yù)測結(jié)果的影響或者與其他特征的關(guān)系)是不同的,因此在輸入特征交互層之前我們就可以調(diào)整特征 “female” 的重要性或者是表示。

現(xiàn)有的工作已經(jīng)注意到了這個問題,例如 IFM、DIFM 等,但是他們僅僅在不同的實例中為相同特征賦予不同的權(quán)重(vector-level weights),導(dǎo)致不同實例中的相同特征的表示存在嚴(yán)格的線性關(guān)系,而這顯然是不太合理的。

另一方面,本文希望一個理想的特征細(xì)化模塊應(yīng)該識別重要的跨實例上下文信息,并學(xué)習(xí)不同上下文下顯著不同的表示。

給出了一個例子:{female, red, lipstick, workday} and {female, red, lipstick, weekend},在這兩個實例匯總,如果使用self-attention(在 CTR 中很常用的模塊,來識別特征之間的關(guān)系),那么因為 “female”和“red”以及“l(fā)ipstick”的關(guān)系比“workday”或者“weekend”的更加緊密,所以在兩個實例中,都會賦予“red”和“l(fā)ipstick”更大的注意力權(quán)重,而對“workday”或者“weekend”的權(quán)重都很小。但是用戶的行為會隨著“workday”到“weekend”的變化而變化。

因此本文提出了一個模型無關(guān)的模塊 Feature Refinement Network(FRNet)來學(xué)習(xí)上下文相關(guān)的特征表示,能夠使得相同的特征在不同的實例中根據(jù)與共現(xiàn)特征的關(guān)系以及完整的上下文信息進(jìn)行調(diào)整。主要貢獻(xiàn)如下:

本文提出了一個名為 FRNet 的新模塊,它是第一個通過將原始和互補(bǔ)的特征表示與比特級權(quán)值相結(jié)合來學(xué)習(xí)上下文感知特征表示的工作。

FRNet 可以被認(rèn)為是許多 CTR 預(yù)測方法的基本組成部分,可以插入在 embedding layer 之后,提高 CTR 預(yù)測方法的性能。

FRNet 表現(xiàn)出了極強(qiáng)集兼容性和有效性。

FRNet模塊

FRNet模型主要包含兩個模塊:

Information Extraction Unit (IEU):IEU 主要是來捕獲上下文相關(guān)的信息(Self-Attention unit)以及特征之間的關(guān)系信息(Contextual Information Extractor)來共同學(xué)習(xí)上下文相關(guān)的信息。再 Integration unit 進(jìn)行融合。

Complementary Selection Gate (CSGate):CSGate 可以自適應(yīng)融合原始的和互補(bǔ)的特征表示,這種融合是在 bit-level 級別上的。

eadf05fc-6ba6-11ed-8abf-dac502259ad0.png

2.1 IEU

通過對以往模型的總結(jié),F(xiàn)RNet 主要通過學(xué)習(xí)特征間的關(guān)系(vector-level)以及上下文相關(guān)的信息(bit-level)的信息來學(xué)習(xí)最后的 context-aware representation。首先在在 IEU 中使用以下兩個模塊:

Self-Attention unit:self-attention 善于學(xué)習(xí)特征之間的關(guān)聯(lián)信息。FRNet 中使用了一個基本的 Self-attention 結(jié)構(gòu)。

eaef793c-6ba6-11ed-8abf-dac502259ad0.png

Contextual Information Extractor:在 motivation 部分提到過,self-attention 雖然擅長學(xué)習(xí)特征之間的關(guān)系,但是無法學(xué)習(xí)整體的上下文信息。所以特地使用了一個簡單的 DNN 模塊來提取不同實例的上下文信息。一個之間的理由是 DNN 可以關(guān)注到所有的特征信息(bit-level 信息)。

eb306492-6ba6-11ed-8abf-dac502259ad0.png

以上兩個單元分別學(xué)習(xí)了特征之間的關(guān)系,對輸入信息進(jìn)行壓縮,保存了特征的上下文信息。接下來通過一個 Integration unit 對這兩部分信息進(jìn)行融合:

eb405708-6ba6-11ed-8abf-dac502259ad0.png

可以看到每個實例只有一個上下文信息維度為 d,而經(jīng)過 self-attention 之后的關(guān)系信息維度是 f*d。所以融合之后相當(dāng)于賦予了每個特征上下文信息,而這部分信息僅僅 self-attention 是無法獲取的。

eb4e2900-6ba6-11ed-8abf-dac502259ad0.png

2.2 CSGate

從圖 2 中可以看到,本文使用了兩個 IEU 模型,其中 模塊學(xué)習(xí)了一組 complementary feature representaion , 學(xué)習(xí)了一組權(quán)重矩陣 ?;?、 以及原始的特征表示 ,F(xiàn)RNet 通過一個選擇門獲得了最后的 context-aware feature representation:

eb6e39c0-6ba6-11ed-8abf-dac502259ad0.png

公式主要分為兩部分:

Selected features:首先最后的結(jié)果并沒有完全舍棄原有的特征表示 E,但是也沒有像 ResNet 那樣將原始表示 E 直接保留,而是通過權(quán)重矩陣進(jìn)行自適應(yīng)的選擇。

Complementary features:另一方面,如果僅僅使用原有的特征也會導(dǎo)致模型的表達(dá)能力受限。現(xiàn)有的一些方法也僅僅通過分配一個權(quán)重的方法來對特征進(jìn)行調(diào)整。同時僅僅分配權(quán)重沒有考慮哪些 unselected information。在計算權(quán)重的時候使用可 sigmoid 方式,如果只使用選擇的一部分信息,會導(dǎo)致最后的信息

“不完整”(這里有點(diǎn)借鑒 GRU 以及 LSTM 的設(shè)計思路)。因為我們從互補(bǔ)矩陣 上選擇互補(bǔ)的信息。

實驗分析

實驗數(shù)據(jù)集:

3.1 整體分析

主要將 FRNet 應(yīng)用到 FM 模型中說明 FRNet 的效果。 這一部分說明了 FRNet 的效果和效率。

eb8f89cc-6ba6-11ed-8abf-dac502259ad0.png

3.2 兼容性分析

將 FRNet 應(yīng)用到其他模型中查看效果。 和其他模塊進(jìn)行對比。

ebaf3a88-6ba6-11ed-8abf-dac502259ad0.png

3.3 超參數(shù)分析

對 IEU 模塊中的兩個超參數(shù)進(jìn)行了分析:

DNN 的層數(shù)

Self-attention 的 attention size

ebcb93fe-6ba6-11ed-8abf-dac502259ad0.png

3.4 消融分析

通過消融實驗來說明 FRNet 中的設(shè)計都是有效的:

Learning context-aware feature representations是有效的。這里面所有的變式都對原始的特征進(jìn)行改進(jìn),從而獲得了更好的效果(和#1對比)

Cross-feature relationships and contextual information 是必要的。#2中學(xué)習(xí)了特征之間的關(guān)系,超過了 #1。#13 和 #3 學(xué)習(xí)了 contextual information,分別超過了 #4 和 #2。

Assigning weights to original features 是合理的。#5 移除了權(quán)重信息,發(fā)現(xiàn) #10 和 #11 超過了 #5。同時 #6 和 #7 超過了 #1 也說明了相同的結(jié)論。

Learning bit-level weights is more effective than learning vector-level。(#7, #9, #11, #13)超過了對應(yīng)的(#6, #8, #10, #12),前者學(xué)習(xí)位級別的權(quán)重,而后者學(xué)習(xí)向量級別的權(quán)重。

Complementary Features 也是很關(guān)鍵的. 添加了輔助特征 之后 #10,#11 分別超過了 #6 和 #7。而且 #12 和 #13 分別超過了 #10 和 #11,說明給輔助特征分配權(quán)重也是必要的。

ebda0df8-6ba6-11ed-8abf-dac502259ad0.png

3.5 特征表示可視化分析

本文的 context-aware feature representation 總結(jié)起來就是一句話:相同的特征在不同的實例下應(yīng)該有不同的表示,而且不同實例下的表示不應(yīng)該有嚴(yán)格的線性關(guān)系。為了說明這一點(diǎn),本文通過可視化的方式進(jìn)行了說明。圖中都是同一個特征的原始表示和 1000 個不同實例中經(jīng)過 FRNet(或者其他模塊)之后的表示。

EGate 無法學(xué)習(xí)不同的表示;DIFM 學(xué)到的表示存在嚴(yán)格的線性關(guān)系。而 FRNet 學(xué)到的表示同時解決了這些問題。

#6 也是學(xué)習(xí)向量級別的權(quán)重,但是和 DIFM 比可以看到,使用 IEU 學(xué)到的權(quán)重可以使得特征空間更加分明。#6 中沒有添加輔助特征,所以可以看到還是存在線性關(guān)系的,而 FRNet-vec 中添加了輔助特征,消除了線性關(guān)系。

FRNet 是學(xué)習(xí) bit-level 的權(quán)重,而 FRNet-vec 是學(xué)習(xí)向量級別的權(quán)重,從分區(qū)的形狀可以看到 FRNet 的非線性特征更加顯著,即更加集中。

ebed139e-6ba6-11ed-8abf-dac502259ad0.png

3.6 IEU可視化分析

前面說到 Self-attention 中存在的問題:在大部分特征都相同的情況下,無法區(qū)分某些不重要的特征表示。在這個實驗中,選擇了兩個特征(只有一個特征是不同的,其他特征都相同),在經(jīng)過 self-attention 之后,獲得的表示都是相同的。 但是在經(jīng)過 CIE(DNN)壓縮之后,可以看到僅僅因為這一個特征的不同,最后獲得的表示是權(quán)重不同的,而這就是 self-attention 無法學(xué)習(xí)的上下文信息。最后 IEU 將上下文信息融合到 self-attention 中獲得了圖 8(c)的效果:兩個實例中的每一組對應(yīng)特征都有顯著的差別。

ec20e3fe-6ba6-11ed-8abf-dac502259ad0.png

3.7 bit-level權(quán)重分析

匯總分析了權(quán)重矩陣 在 100K 個實例中分布情況。通過均值可以看出來 57.8% 的概率選擇原始特征表示,而 42.2% 的概率選擇互補(bǔ)特征。

ec67155e-6ba6-11ed-8abf-dac502259ad0.png

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3370

    瀏覽量

    49288
  • CTR
    CTR
    +關(guān)注

    關(guān)注

    0

    文章

    37

    瀏覽量

    14167
  • dnn
    dnn
    +關(guān)注

    關(guān)注

    0

    文章

    60

    瀏覽量

    9097

原文標(biāo)題:FRNet:上下文感知的特征強(qiáng)化模塊

文章出處:【微信號:zenRRan,微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    SystemView上下文統(tǒng)計窗口識別阻塞原因

    SystemView工具可以記錄嵌入式系統(tǒng)的運(yùn)行時行為,實現(xiàn)可視化的深入分析。在新發(fā)布的v3.54版本中,增加了一項新功能:上下文統(tǒng)計窗口,提供了對任務(wù)運(yùn)行時統(tǒng)計信息的深入分析,使用戶能夠徹底檢查每個任務(wù),幫助開發(fā)人員識別阻塞原因。
    的頭像 發(fā)表于 08-20 11:31 ?494次閱讀

    鴻蒙Ability Kit(程序框架服務(wù))【應(yīng)用上下文Context】

    [Context]是應(yīng)用中對象的上下文,其提供了應(yīng)用的一些基礎(chǔ)信息,例如resourceManager(資源管理)、applicationInfo(當(dāng)前應(yīng)用信息)、dir(應(yīng)用文件路徑)、area
    的頭像 發(fā)表于 06-06 09:22 ?588次閱讀
    鴻蒙Ability Kit(程序框架服務(wù))【應(yīng)用<b class='flag-5'>上下文</b>Context】

    編寫一個任務(wù)調(diào)度程序,在上下文切換后遇到了一些問題求解

    大家好, 我正在編寫一個任務(wù)調(diào)度程序,在上下文切換后遇到了一些問題。 為下一個任務(wù)恢復(fù)上下文后: __builtin_tricore_mtcr_by_name(\"pcxi\"
    發(fā)表于 05-22 07:50

    鴻蒙開發(fā)接口Ability框架:【Context】

    Context模塊提供開發(fā)者運(yùn)行代碼的上下文環(huán)境的能力,包括查詢和設(shè)置應(yīng)用信息、ResourceManager等信息。
    的頭像 發(fā)表于 05-21 17:33 ?941次閱讀
    鴻蒙開發(fā)接口Ability框架:【Context】

    鴻蒙開發(fā)接口Ability框架:【ServiceExtensionContext】

    ServiceExtensionContext模塊是ServiceExtension的上下文環(huán)境,繼承自ExtensionContext。
    的頭像 發(fā)表于 05-20 16:26 ?916次閱讀
    鴻蒙開發(fā)接口Ability框架:【ServiceExtensionContext】

    鴻蒙開發(fā)接口Ability框架:【ApplicationContext】

    ApplicationContext模塊提供開發(fā)者應(yīng)用級別的的上下文的能力,包括提供注冊及取消注冊應(yīng)用內(nèi)組件生命周期的監(jiān)聽接口。
    的頭像 發(fā)表于 05-16 11:51 ?706次閱讀
    鴻蒙開發(fā)接口Ability框架:【ApplicationContext】

    鴻蒙開發(fā)接口Ability框架:【ExtensionContext】

    ExtensionContext是Extension的上下文環(huán)境,繼承自Context。
    的頭像 發(fā)表于 05-15 17:34 ?365次閱讀
    鴻蒙開發(fā)接口Ability框架:【ExtensionContext】

    鴻蒙開發(fā)接口Ability框架:【Context】

    Context模塊提供開發(fā)者運(yùn)行代碼的上下文環(huán)境的能力,包括查詢和設(shè)置應(yīng)用信息、ResourceManager等信息。
    的頭像 發(fā)表于 05-15 15:29 ?627次閱讀
    鴻蒙開發(fā)接口Ability框架:【Context】

    鴻蒙開發(fā)接口Ability框架:【 (Context模塊)】

    Context模塊提供了ability或application的上下文的能力,包括允許訪問特定于應(yīng)用程序的資源、請求和驗證權(quán)限等。
    的頭像 發(fā)表于 05-13 16:04 ?787次閱讀
    鴻蒙開發(fā)接口Ability框架:【 (Context<b class='flag-5'>模塊</b>)】

    鴻蒙開發(fā)接口Ability框架:【(AbilityContext)】

    AbilityContext是Ability的上下文環(huán)境,繼承自Context。
    的頭像 發(fā)表于 05-13 09:26 ?1089次閱讀
    鴻蒙開發(fā)接口Ability框架:【(AbilityContext)】

    關(guān)于嵌入式C語言的弱符號和弱引用解析

     總之,__attribute__ 起到了給編譯器提供上下文的作用,如果錯誤的使用 __attribute__ 指令,因為給編譯器提供了錯誤的上下文,由此引起的錯誤通常很難被發(fā)現(xiàn)。
    發(fā)表于 05-03 10:48 ?273次閱讀

    鴻蒙開發(fā)接口Ability框架:【@ohos.application.Ability (Ability)】

    Ability模塊提供對Ability生命周期、上下文環(huán)境等調(diào)用管理的能力,包括Ability創(chuàng)建、銷毀、轉(zhuǎn)儲客戶端信息等。
    的頭像 發(fā)表于 04-30 17:42 ?2364次閱讀
    鴻蒙開發(fā)接口Ability框架:【@ohos.application.Ability (Ability)】

    OpenHarmony中SELinux使用詳解

    )和上下文(context)。 我們可以通過ps -Z 命令來查看當(dāng)前進(jìn)程的域信息,也就是進(jìn)程的SELinux信息: **# ps -Z LABEL PID TTY TIME CMD u:r:sh
    發(fā)表于 04-03 10:43

    TC397收到EVAL_6EDL7141_TRAP_1SH 3上下文管理EVAL_6EDL7141_TRAP_1SH錯誤怎么解決?

    我收到EVAL_6EDL7141_TRAP_1SH 3 類(TIN4-Free 上下文列表下溢)上下文管理EVAL_6EDL7141_TRAP_1SH錯誤。 請告訴我解決這個問題的辦法。
    發(fā)表于 03-06 08:00

    請問risc-v中斷還需要軟件保存上下文和恢復(fù)嗎?

    risc-v中斷還需要軟件保存上下文和恢復(fù)嗎?
    發(fā)表于 02-26 07:40
    主站蜘蛛池模板: 欧美性色xo影院69 | 2020av在线 | video另类蛇交 | xx在线| 91大神精品在线观看 | 国产精品日本亚洲777 | 卡2卡三卡四卡精品公司 | 久碰香蕉精品视频在线观看 | 天天综合射 | 狠狠色噜噜狠狠狠狠97不卡 | 亚洲综合婷婷 | 日韩xx00 | 日本三级带日本三级带黄首页 | 天堂在线视频精品 | 在线观看免费国产 | 都市激情亚洲综合 | 美女被啪到哭网站在线观看 | 韩国一级网站 | 一区在线观看 | 男女艹逼软件 | 1v1双性受整夜不拔bl | 亚洲成年网站 | 国产精品久久久亚洲第一牛牛 | 亚洲欧美日韩另类精品一区二区三区 | 91大神大战高跟丝袜美女 | 亚洲高清网站 | 国产又黄又爽又猛的免费视频播放 | bt天堂新版中文在线地址 | 国产一区二区三区美女在线观看 | h在线免费| 三级在线观看免播放网站 | 免费看黄视频的网站 | 你懂得网址在线观看 | 五月开心六月伊人色婷婷 | 夜夜爽天天干 | 国产91丝袜在线播放九色 | 国产精品视频第一区二区三区 | 国产―笫一页―浮力影院xyz | 永久福利盒子日韩日韩免费看 | 色在线免费视频 | 你懂的免费在线观看 |