在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

對樸素貝葉斯算法原理做展開介紹

新機器視覺 ? 來源:ShowMeAI ? 2023-01-16 10:11 ? 次閱讀

在眾多機器學(xué)習(xí)分類算法中,本篇我們提到的樸素貝葉斯模型,和其他絕大多數(shù)分類算法都不同,也是很重要的模型之一。

poYBAGPEsr2ASzlEAADKucpOcY4770.jpg

樸素貝葉斯是一個非常直觀的模型,在很多領(lǐng)域有廣泛的應(yīng)用,比如早期的文本分類,很多時候會用它作為 baseline 模型,本篇內(nèi)容我們對樸素貝葉斯算法原理做展開介紹。

1.樸素貝葉斯算法核心思想

貝葉斯分類是一類分類算法的總稱,這類算法均以貝葉斯定理為基礎(chǔ),故統(tǒng)稱為貝葉斯分類。而樸素貝葉斯(Naive Bayes)分類是貝葉斯分類中最簡單,也是常見的一種分類方法。

樸素貝葉斯算法的核心思想是通過考慮特征概率來預(yù)測分類,即對于給出的待分類樣本,求解在此樣本出現(xiàn)的條件下各個類別出現(xiàn)的概率,哪個最大,就認(rèn)為此待分類樣本屬于哪個類別。

舉個例子:眼前有100個西瓜,好瓜和壞瓜個數(shù)差不多,現(xiàn)在要用這些西瓜來訓(xùn)練一個『壞瓜識別器』,我們要怎么辦呢?

一般挑西瓜時通常要『敲一敲』,聽聽聲音,是清脆聲、濁響聲、還是沉悶聲。所以,我們先簡單點考慮這個問題,只用敲擊的聲音來辨別西瓜的好壞。根據(jù)經(jīng)驗,敲擊聲『清脆』說明西瓜還不夠熟,敲擊聲『沉悶』說明西瓜成熟度好,更甜更好吃。

2c8bb456-94dc-11ed-bfe3-dac502259ad0.png

所以,壞西瓜的敲擊聲是『清脆』的概率更大,好西瓜的敲擊聲是『沉悶』的概率更大。當(dāng)然這并不絕對——我們千挑萬選地『沉悶』瓜也可能并沒熟,這就是噪聲了。當(dāng)然,在實際生活中,除了敲擊聲,我們還有其他可能特征來幫助判斷,例如色澤、跟蒂、品類等。

樸素貝葉斯把類似『敲擊聲』這樣的特征概率化,構(gòu)成一個『西瓜的品質(zhì)向量』以及對應(yīng)的『好瓜/壞瓜標(biāo)簽』,訓(xùn)練出一個標(biāo)準(zhǔn)的『基于統(tǒng)計概率的好壞瓜模型』,這些模型都是各個特征概率構(gòu)成的。

2c9f9872-94dc-11ed-bfe3-dac502259ad0.jpg

這樣,在面對未知品質(zhì)的西瓜時,我們迅速獲取了特征,分別輸入『好瓜模型』和『壞瓜模型』,得到兩個概率值。如果『壞瓜模型』輸出的概率值大一些,那這個瓜很有可能就是個壞瓜。

2.貝葉斯公式與條件獨立假設(shè)

貝葉斯定理中很重要的概念是先驗概率、后驗概率條件概率。(關(guān)于這部分依賴的數(shù)學(xué)知識,大家可以查看ShowMeAI的文章 圖解AI數(shù)學(xué)基礎(chǔ) | 概率與統(tǒng)計,也可以下載我們的速查手冊 AI知識技能速查 | 數(shù)學(xué)基礎(chǔ)-概率統(tǒng)計知識)(鏈接見文末)。

1)先驗概率與后驗概率

poYBAGPEsyiAad69AAHm3ljqprI507.jpg

2cb5b67a-94dc-11ed-bfe3-dac502259ad0.png

2)貝葉斯公式

簡單來說,貝葉斯定理(Bayes Theorem,也稱貝葉斯公式)是基于假設(shè)的先驗概率、給定假設(shè)下觀察到不同數(shù)據(jù)的概率,提供了一種計算后驗概率的方法。在人工智能領(lǐng)域,有一些概率型模型會依托于貝葉斯定理,比如我們今天的主角『樸素貝葉斯模型』。

2cd29da8-94dc-11ed-bfe3-dac502259ad0.png

pYYBAGPEsw6AWIbXAADN1T2UhjY465.jpg

3)條件獨立假設(shè)與樸素貝葉斯

基于貝葉斯定理的貝葉斯模型是一類簡單常用的分類算法。在『假設(shè)待分類項的各個屬性相互獨立』的情況下,構(gòu)造出來的分類算法就稱為樸素的,即樸素貝葉斯算法。

所謂『樸素』,是假定所有輸入事件之間是相互獨立。進行這個假設(shè)是因為獨立事件間的概率計算更簡單。

poYBAGPEs0yAc62oAAE1YSs9y_c185.jpg

2d0692b6-94dc-11ed-bfe3-dac502259ad0.png

要求出第四項中的后驗概率,就需要分別求出在第三項中的各個條件概率,其步驟是:
poYBAGPEs2WAE1GgAADjbOR-Tuw136.jpg

2d2b0916-94dc-11ed-bfe3-dac502259ad0.png

pYYBAGPEs3yAPUw4AAEr8g2_HdQ213.jpg

2d7661fe-94dc-11ed-bfe3-dac502259ad0.png

pYYBAGPEs4-AEB-3AAC3YVKzsjg813.jpg

2db7c9d2-94dc-11ed-bfe3-dac502259ad0.png

總結(jié)一下,樸素貝葉斯模型的分類過程如下流程圖所示:

2dd0adda-94dc-11ed-bfe3-dac502259ad0.png

3.伯努利與多項式樸素貝葉斯

1)多項式vs伯努利樸素貝葉斯

大家在一些資料中,會看到『多項式樸素貝葉斯』和『伯努利樸素貝葉斯』這樣的細(xì)分名稱,我們在這里基于文本分類來給大家解釋一下:

2ddfe6f6-94dc-11ed-bfe3-dac502259ad0.png

pYYBAGPEs6-AG4nMAABsXWI9iLg696.jpg

如果直接以單詞的頻次參與統(tǒng)計計算,那就是多項式樸素貝葉斯的形態(tài)。

如果以是否出現(xiàn)(0和1)參與統(tǒng)計計算,就是伯努利樸素貝葉斯的形態(tài)。

2deb7548-94dc-11ed-bfe3-dac502259ad0.png

(1)多項式樸素貝葉斯

poYBAGPEs8WAJvG2AAGO_RCOAog276.jpg

(2)伯努利樸素貝葉斯

對應(yīng)的,在伯努利樸素貝葉斯里,我們假設(shè)各個特征在各個類別下是服從n重伯努利分布(二項分布)的,因為伯努利試驗僅有兩個結(jié)果,因此,算法會首先對特征值進行二值化處理(假設(shè)二值化的結(jié)果為1與0)。

pYYBAGPEs9qAGvn2AAC2VQskQtc154.jpg

2)樸素貝葉斯與連續(xù)值特征

我們發(fā)現(xiàn)在之前的概率統(tǒng)計方式,都是基于離散值的。如果遇到連續(xù)型變量特征,怎么辦呢?

以人的身高,物體的長度為例。一種處理方式是:把它轉(zhuǎn)換成離散型的值。比如:

pYYBAGPEs_aAQZZcAAHhJNCL3ng883.jpg

2e1cc33c-94dc-11ed-bfe3-dac502259ad0.png

回到上述例子,如果身高是我們判定人性別(男/女)的特征之一,我們可以假設(shè)男性和女性的身高服從正態(tài)分布,通過樣本計算出身高均值和方差,對應(yīng)上圖中公式就得到正態(tài)分布的密度函數(shù)。有了密度函數(shù),遇到新的身高值就可以直接代入,算出密度函數(shù)的值。

4.平滑處理

1)為什么需要平滑處理

使用樸素貝葉斯,有時候會面臨零概率問題。零概率問題,指的是在計算實例的概率時,如果某個量,在觀察樣本庫(訓(xùn)練集)中沒有出現(xiàn)過,會導(dǎo)致整個實例的概率結(jié)果是0。

在文本分類的問題中,當(dāng)『一個詞語沒有在訓(xùn)練樣本中出現(xiàn)』時,這個詞基于公式統(tǒng)計計算得到的條件概率為0,使用連乘計算文本出現(xiàn)概率時也為0。這是不合理的,不能因為一個事件沒有觀察到就武斷的認(rèn)為該事件的概率是0。

2)拉普拉斯平滑及依據(jù)

poYBAGPEtA6AH2oFAAExcR5IwF4894.jpg

2e39e264-94dc-11ed-bfe3-dac502259ad0.png

poYBAGPEtCiAft8OAADd-4hnlIY760.jpg







審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8446

    瀏覽量

    133122
  • 樸素貝葉斯
    +關(guān)注

    關(guān)注

    0

    文章

    12

    瀏覽量

    3392

原文標(biāo)題:圖解樸素貝葉斯

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    機器學(xué)習(xí)的樸素講解

    秦剛剛的機器學(xué)習(xí)成長之路之樸素
    發(fā)表于 05-15 14:41

    樸素法的優(yōu)缺點

    樸素法(1) 之 基礎(chǔ)概念
    發(fā)表于 08-05 11:32

    樸素法的惡意留言過濾

    樸素法(2) 之 惡意留言過濾
    發(fā)表于 08-26 14:40

    常用的分類方法:樸素

    統(tǒng)計學(xué)習(xí)方法樸素
    發(fā)表于 11-05 09:24

    樸素過濾郵箱里的垃圾郵件

    樸素垃圾郵件識別
    發(fā)表于 03-18 11:28

    樸素算法的理解

    我對樸素算法的理解
    發(fā)表于 05-15 14:13

    機器學(xué)習(xí)之樸素應(yīng)用教程

    今天介紹機器學(xué)習(xí)中一種基于概率的常見的分類方法,樸素,之前介紹的KNN, decision
    發(fā)表于 11-25 12:49 ?1398次閱讀
    機器學(xué)習(xí)之<b class='flag-5'>樸素</b><b class='flag-5'>貝</b><b class='flag-5'>葉</b><b class='flag-5'>斯</b>應(yīng)用教程

    基于概率的常見的分類方法--樸素

    本文介紹機器學(xué)習(xí)中一種基于概率的常見的分類方法,樸素,之前介紹的KNN, decision
    的頭像 發(fā)表于 02-03 14:37 ?5298次閱讀
    基于概率的常見的分類方法--<b class='flag-5'>樸素</b><b class='flag-5'>貝</b><b class='flag-5'>葉</b><b class='flag-5'>斯</b>

    樸素NB經(jīng)典案例

    分類算法是統(tǒng)計學(xué)的一種分類方法,其分類原理就是利用
    發(fā)表于 02-28 10:17 ?2次下載

    機器學(xué)習(xí)之樸素

    學(xué)習(xí)過概率的人一定知道貝葉斯定理,在信息領(lǐng)域內(nèi)有著無與倫比的地位。算法是基于貝葉斯定理的一類算法,主要用來解決分類和回歸問題。人工智能
    發(fā)表于 05-29 09:01 ?923次閱讀

    樸素算法詳細(xì)總結(jié)

    樸素法是基于貝葉斯定理與特征條件獨立假設(shè)的分類方法,是經(jīng)典的機器學(xué)習(xí)算法之一,處理很多問題時直接又高效,因此在很多領(lǐng)域有著廣泛的應(yīng)用,
    的頭像 發(fā)表于 07-01 08:37 ?3.5w次閱讀
    <b class='flag-5'>樸素</b><b class='flag-5'>貝</b><b class='flag-5'>葉</b><b class='flag-5'>斯</b><b class='flag-5'>算法</b>詳細(xì)總結(jié)

    帶你入門常見的機器學(xué)習(xí)分類算法——邏輯回歸、樸素、KNN、SVM、決策樹

    樸素方法是一組基于貝葉斯定理的監(jiān)督學(xué)習(xí)算法,在給定類變量值的情況下,樸素假設(shè)每對特征之間存
    的頭像 發(fā)表于 05-06 09:29 ?1w次閱讀

    一種改進互信息的加權(quán)樸素算法

    互信息和樸素算法應(yīng)用于垃圾郵件過濾時,存在特征冗余和獨立性假設(shè)不成立的問題。為此,提出種改進互信息的加權(quán)
    發(fā)表于 03-16 10:15 ?12次下載
    一種改進互信息的加權(quán)<b class='flag-5'>樸素</b><b class='flag-5'>貝</b><b class='flag-5'>葉</b><b class='flag-5'>斯</b><b class='flag-5'>算法</b>

    樸素分類 樸素算法的優(yōu)點

    樸素方法是在
    的頭像 發(fā)表于 10-02 17:14 ?9407次閱讀

    PyTorch教程22.9之樸素

    電子發(fā)燒友網(wǎng)站提供《PyTorch教程22.9之樸素.pdf》資料免費下載
    發(fā)表于 06-06 09:22 ?0次下載
    PyTorch教程22.9之<b class='flag-5'>樸素</b><b class='flag-5'>貝</b><b class='flag-5'>葉</b><b class='flag-5'>斯</b>
    主站蜘蛛池模板: 国产成人综合亚洲怡春院 | 亚洲综合激情九月婷婷 | 国产精品久久久久久福利 | 久久久久久国产精品免费免费 | 人人搞人人爱 | 成年片色大黄全免费网址 | 久久免 | 嫩草黄色影院 | 亚洲午夜视频在线 | 久久婷婷丁香七月色综合 | 一区二区三区在线播放 | 爆操欧美| 特级毛片免费视频播放 | 147西西人体大胆免费网 | 中文日产国产精品久久 | 日本免费视频 | 亚洲性色成人 | 五月婷婷在线视频观看 | 5060精品国产福利午夜 | 迅雷www天堂在线资源 | 操片免费| 日韩在线一区视频 | 天天草夜夜操 | 夜夜夜夜夜夜夜猛噜噜噜噜噜噜 | 免费一级在线 | 免费h视频网站 | 天天综合天天综合 | 黄色录像欧美 | 亚洲日本久久久午夜精品 | 女人张腿让男桶免费视频观看 | 美女视频一区二区三区 | 在线免费观看黄色小视频 | 全黄h全肉边做边吃奶在线观看 | 色噜噜狠狠狠狠色综合久一 | 午夜小视频在线播放 | 午夜资源| 性欧美bbbbbb | 日本a级精品一区二区三区 日本a级特黄三级三级三级 | 伊人久久大香线蕉综合高清 | 永久免费视频网站在线观看 | 国产色丁香久久综合 |