外差接收機(jī)作為接收機(jī)方案的標(biāo)準(zhǔn)選擇已有數(shù)十年歷史。 近年來,模數(shù)轉(zhuǎn)換器 (ADC) 采樣速率的迅速提高、嵌入式數(shù)字處理的采納以及匹配通道的集成,為接收機(jī)架構(gòu)提供了幾年前尚被認(rèn)為是不切實際的其他選擇。
本文比較三種常用接收機(jī)架構(gòu)的優(yōu)勢和挑戰(zhàn):外差接收機(jī)、直接采樣接收機(jī)和直接變頻接收機(jī)。 還會討論關(guān)于雜散,系統(tǒng)噪聲和動態(tài)范圍的額外考慮。 本文的意圖并非要褒揚某種方案而貶抑其他方案,相反,本文旨在說明這些方案的優(yōu)點和缺點,并鼓勵設(shè)計人員按照工程準(zhǔn)則選擇最適合特定應(yīng)用的架構(gòu)。
架構(gòu)比較
表1比較了外差、直接采樣和直接變頻三種架構(gòu)。 同時顯示了每種架構(gòu)的基本拓?fù)浜鸵恍├住?/p>
表1. 接收機(jī)架構(gòu)比較
外差方法久經(jīng)檢驗,性能出色。 實施原理是混頻到中頻 (IF)。 IF需選擇足夠高的頻率,使得實際濾波器在工作頻段中能夠提供良好的鏡像抑制和LO隔離。 當(dāng)有超高動態(tài)范圍ADC可用時,增加一個混頻級以降低頻率也很常見。 此外,接收機(jī)增益分布在不同的頻率上,這使得高增益接收機(jī)發(fā)生振蕩的風(fēng)險非常小。 通過適當(dāng)?shù)念l率規(guī)劃,外差接收機(jī)可以實現(xiàn)非常好的雜散能量和噪聲性能。 遺憾的是,這種架構(gòu)是最復(fù)雜的。 相對于可用帶寬,其需要的功耗和物理尺寸通常是最大的。 此外,對于較大分?jǐn)?shù)帶寬,其頻率規(guī)劃可能非常困難。 在當(dāng)前追求小尺寸、低重量、低功耗 (SWaP) 并希望獲得寬帶寬的背景下,這些挑戰(zhàn)難度很大,導(dǎo)致設(shè)計人員不得不考慮其他可能的架構(gòu)選項。
直接采樣方法已被業(yè)界追求許久,其障礙在于很難讓轉(zhuǎn)換器工作于直接射頻采樣所需的速率并且實現(xiàn)大輸入帶寬以及實現(xiàn)大輸入帶寬。 在這種架構(gòu)中,全部接收機(jī)增益都位于工作頻段頻率,如果需要較大接收機(jī)增益,布局布線必須非常小心。 如今,在L和S波段的較高奈奎斯特頻段,已有轉(zhuǎn)換器可用于直接采樣。 業(yè)界在不斷取得進(jìn)展,C波段采樣很快就會變得實用,后續(xù)將解決X波段采樣。
直接變頻架構(gòu)對數(shù)據(jù)轉(zhuǎn)換器帶寬的使用效率最高。數(shù)據(jù)轉(zhuǎn)換器在第一奈奎斯特頻段工作,此時性能最優(yōu),低通濾波更為簡單。兩個數(shù)據(jù)轉(zhuǎn)換器配合工作,對I/Q信號進(jìn)行采樣,從而提高用戶帶寬,同時又不會有交織難題。對于直接變頻架構(gòu),困擾多年的主要挑戰(zhàn)是維持I/Q平衡以實現(xiàn)合理水平的鏡像抑制、LO泄漏和直流失調(diào)。近年來,整個直接變頻信號鏈的先進(jìn)集成加上數(shù)字校準(zhǔn)已克服了這些挑戰(zhàn),直接變頻架構(gòu)在很多系統(tǒng)中已成為非常實用的方法。
頻率規(guī)劃視角
圖1顯示了三種架構(gòu)的框圖和頻率規(guī)劃示例。圖1a為外差接收機(jī)示例,高端LO將工作頻段混頻到ADC的第二奈奎斯特區(qū)。信號進(jìn)一步混疊到第一奈奎斯特區(qū)進(jìn)行處理。圖1b為直接采樣接收機(jī)示例。工作頻段在第三奈奎斯特區(qū)進(jìn)行采樣并混疊至第一奈奎斯特區(qū),然后將NCO置于頻段中心,數(shù)字下變頻到基帶,再進(jìn)行濾波和抽取,數(shù)據(jù)速率降低到與通道帶寬相稱的水平。圖1c為直接變頻接收機(jī)示例。雙通道ADC與正交解調(diào)器對接,通道1對I(同相)信號進(jìn)行采樣,通道2對Q(正交)信號進(jìn)行采樣。
圖1. 頻率規(guī)劃示例。
許多現(xiàn)代ADC同時支持所有三種架構(gòu)。例如,AD9680是一款具備可編程數(shù)字下變頻功能的雙通道1.25 GSPS ADC。此類雙通道ADC支持雙通道外差架構(gòu)和直接采樣架構(gòu),一對轉(zhuǎn)換器合作則可支持直接變頻架構(gòu)。
采用分立實施方案時,直接變頻架構(gòu)的鏡像抑制挑戰(zhàn)可能相當(dāng)難以克服。通過提高集成度并結(jié)合數(shù)字輔助處理,I/Q通道可以很好地匹配,從而大幅改善鏡像抑制。最近發(fā)布的AD9371的接收部分是一個直接變頻接收機(jī),如圖2所示,注意它與圖1c的相似性。
圖2. AD9371的接收部分:單片直接變頻接收機(jī)。
雜散噪聲
任何采用頻率轉(zhuǎn)換的設(shè)計都需要作出很大努力來使不需要的帶內(nèi)折頻最小化。這是頻率規(guī)劃最微妙的地方,涉及到可用元件與實際濾波器設(shè)計的平衡。某些雜散折疊問題在此略作說明,如需詳細(xì)解釋,請設(shè)計人員參閱參考文獻(xiàn)。
圖3顯示了ADC輸入頻率和前兩個諧波的折疊與輸入頻率(相對于奈奎斯特頻段)的關(guān)系。 當(dāng)通道帶寬遠(yuǎn)小于奈奎斯特帶寬時,接收機(jī)設(shè)計人員的目標(biāo)是選擇適當(dāng)?shù)墓ぷ鼽c以將折疊的諧波置于通道帶寬之外。
圖3. ADC折頻
接收機(jī)下變頻混頻器會增加復(fù)雜性。 任何混頻器都會在器件內(nèi)引起諧波。 這些諧波全都混在一起,產(chǎn)生其他頻率。 圖4顯示了這種影響。
圖4. 下變頻混頻器雜散
圖3和圖4僅顯示了截止三階的雜散。 實踐中還有其他更高階的雜散,設(shè)計人員需要處理由此而來的無雜散動態(tài)范圍問題。 對于較窄的小數(shù)帶寬,細(xì)致精當(dāng)?shù)念l率規(guī)劃可以克服混頻器雜散問題。 隨著帶寬增加,混頻器雜散問題成為重大障礙。 由于ADC采樣頻率提高,有時候使用直接采樣架構(gòu)來降低雜散會更切合實際。
接收機(jī)噪聲
接收機(jī)設(shè)計的很多工作是花在最小化噪聲系數(shù) (NF) 上面。 噪聲系數(shù)衡量信噪比的降低程度。
器件或子系統(tǒng)噪聲系數(shù)的影響是使輸出噪聲功率高于熱噪聲水平,即被噪聲系數(shù)放大。
級聯(lián)噪聲系數(shù)計算如下:
ADC之前的接收機(jī)增益的選擇以及所需ADC SNR的確定,是接收機(jī)總噪聲系數(shù)與瞬時動態(tài)范圍平衡的結(jié)果。 圖5為要考慮的參數(shù)的示意圖。 為了便于說明,接收機(jī)噪聲折算到ADC前端抗混疊濾波器之前,即被濾波之后的噪聲。 ADC噪聲顯示為平坦的白噪聲,目標(biāo)信號顯示為–1 dBFS的連續(xù)波 (CW) 信號音。
圖5. 接收機(jī) + ADC噪聲
首先需要常用單位,即dBm或dBFS。 根據(jù)轉(zhuǎn)換器滿量程電平和轉(zhuǎn)換器噪聲密度,可將ADC噪聲從dBFS換算為dBm。 此外,噪聲功率與帶寬成比例,故而需要一個常用帶寬單位。 某些設(shè)計人員使用通道帶寬,這里我們歸一化到1 Hz帶寬,噪聲功率為/Hz。
總噪聲計算如下:
這就引出了ADC靈敏度損失概念。 ADC靈敏度損失用于衡量由ADC噪聲引起的接收機(jī)噪聲性能降低程度。 為使此降幅最小,接收機(jī)噪聲需要遠(yuǎn)高于ADC噪聲。 限制來自動態(tài)范圍,較大接收機(jī)增益會限制能接收而不會使ADC飽和的最大信號。
因此,接收機(jī)設(shè)計人員總是要面對動態(tài)范圍與噪聲系數(shù)平衡的挑戰(zhàn)。
結(jié)語
本文簡述了外差、直接采樣和直接變頻三種接收機(jī)架構(gòu),重點討論了每種架構(gòu)的優(yōu)勢和挑戰(zhàn)。 本文還介紹了接收機(jī)設(shè)計的最新趨勢和考慮。 對更高帶寬的普遍渴望,結(jié)合GSPS數(shù)據(jù)轉(zhuǎn)換器的進(jìn)步,將使許多不同的接收機(jī)設(shè)計在未來很長時間內(nèi)百花齊放。
作者:Peter Delos ADI公司航空航天和防務(wù)部的技術(shù)主管, 前洛克希德馬丁公司工程師。 為多個雷達(dá)和電子戰(zhàn)計劃開發(fā)接收機(jī)/激勵器和頻率合成器。 這段經(jīng)驗包括架構(gòu)定義、詳細(xì)設(shè)計、快速原型開發(fā)、制造、現(xiàn)場安裝和協(xié)調(diào)多個工程專業(yè)。 他的工作引領(lǐng)了相控陣接收器/激勵器從集中式架構(gòu)到陣列上數(shù)字波束合成系統(tǒng)的轉(zhuǎn)變。
審核編輯:湯梓紅
-
寬帶
+關(guān)注
關(guān)注
4文章
1008瀏覽量
61291 -
接收機(jī)
+關(guān)注
關(guān)注
8文章
1200瀏覽量
54049 -
adc
+關(guān)注
關(guān)注
99文章
6606瀏覽量
547564 -
RF
+關(guān)注
關(guān)注
65文章
3157瀏覽量
168233 -
模數(shù)轉(zhuǎn)換器
+關(guān)注
關(guān)注
26文章
3259瀏覽量
127688
原文標(biāo)題:前洛克希德馬丁高工談寬帶RF接收機(jī)架構(gòu)
文章出處:【微信號:CloudBrain-TT,微信公眾號:云腦智庫】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
寬帶RF接收機(jī)架構(gòu)方案的綜述

雷達(dá)接收機(jī)噪聲系數(shù)定義 接收機(jī)噪聲系數(shù)是多少

什么是寬帶RF接收機(jī)架構(gòu)方案?
接收機(jī)架構(gòu)之子電路制作
寬帶數(shù)字接收機(jī)的信道化設(shè)計

短波寬帶接收機(jī)信道化的仿真實現(xiàn)

寬帶RF接收機(jī)架構(gòu)方案綜述

三種常用接收機(jī)架構(gòu)的優(yōu)勢和挑戰(zhàn)及方案說明

雷達(dá)接收機(jī)的噪聲洗漱和靈敏度解析
寬帶RF接收機(jī)架構(gòu)選項綜述

評論