在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

Dbwd_Imgtec ? 來(lái)源:未知 ? 2023-05-15 14:20 ? 次閱讀

來(lái)源:青榴實(shí)驗(yàn)室


1、引子

深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類(lèi)或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。

在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)(MLP),卷積神經(jīng)網(wǎng)絡(luò)(CNN)和遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。


2、什么是深度神經(jīng)網(wǎng)絡(luò)

機(jī)器學(xué)習(xí)是一門(mén)多領(lǐng)域交叉學(xué)科,專(zhuān)門(mén)研究計(jì)算機(jī)怎樣模擬或?qū)崿F(xiàn)人類(lèi)的學(xué)習(xí)行為,以獲取新的知識(shí)或技能,重新組織已有的知識(shí)結(jié)構(gòu)使之不斷改善自身的性能。它是人工智能的核心,是使計(jì)算機(jī)具有智能的根本途徑。如果論及哪一個(gè)機(jī)器學(xué)習(xí)的領(lǐng)域最為熱門(mén),非人工智能莫屬,這就是深度學(xué)習(xí)。深度學(xué)習(xí)框架又名深度神經(jīng)網(wǎng)絡(luò),一個(gè)復(fù)雜的模式識(shí)別系統(tǒng),在過(guò)去的幾十年里,機(jī)器學(xué)習(xí)給我們的日常生活帶來(lái)了巨大的影響,包括高效的網(wǎng)絡(luò)搜索、自動(dòng)駕駛系統(tǒng)、計(jì)算機(jī)視覺(jué)光學(xué)字符識(shí)別。

深度神經(jīng)網(wǎng)絡(luò)模型已經(jīng)成為機(jī)器學(xué)習(xí)和人工智能的有力工具。深度神經(jīng)網(wǎng)絡(luò)(DNN)的輸入層和輸出層之間有多層的人工神經(jīng)網(wǎng)絡(luò)(ANN)。

深層神經(jīng)網(wǎng)絡(luò)的迅速發(fā)展應(yīng)用致使語(yǔ)音識(shí)別錯(cuò)誤率上較傳統(tǒng)語(yǔ)音識(shí)別方法錯(cuò)誤率減少30%(20年來(lái)最大降幅),同時(shí)也大幅削減了圖像識(shí)別的錯(cuò)誤率,自2011年以來(lái)深度學(xué)習(xí)圖像識(shí)別的錯(cuò)誤率從26%到3.5%,而人類(lèi)是5%。


3、深度神經(jīng)網(wǎng)絡(luò)的基本原理

深度神經(jīng)網(wǎng)絡(luò)模型最初基于神經(jīng)生物學(xué)的啟發(fā)。生物神經(jīng)元通過(guò)與樹(shù)突的突觸接觸接收多個(gè)信號(hào),并通過(guò)軸突發(fā)送單一的動(dòng)作電位流。通過(guò)對(duì)輸入模式進(jìn)行分類(lèi),可以降低多個(gè)輸入的復(fù)雜性。受這種輸入輸出方式的啟發(fā),人工神經(jīng)網(wǎng)絡(luò)模型由組合多個(gè)輸入和單一的輸出單元組成。神經(jīng)網(wǎng)絡(luò)以模擬人類(lèi)大腦的功能為目標(biāo),并基于一個(gè)簡(jiǎn)單的人工神經(jīng)元:輸入信號(hào)的加權(quán)和的非線性函數(shù)(如max(0, value))。這些偽神經(jīng)元被聚合成層,一層的輸出成為序列中下一層的輸入。

4、深度神經(jīng)網(wǎng)絡(luò)的“深”

深度神經(jīng)網(wǎng)絡(luò)在神經(jīng)網(wǎng)絡(luò)中采用了深度結(jié)構(gòu)?!吧睢笔侵冈趯哟螖?shù)和單層單元數(shù)的深兼具較高復(fù)雜性的功能。云計(jì)算中的大型數(shù)據(jù)集可以通過(guò)使用額外的和更大的層來(lái)捕獲更高級(jí)數(shù)據(jù)模式來(lái)構(gòu)建更精確的模型。神經(jīng)網(wǎng)絡(luò)的兩個(gè)階段被稱(chēng)為訓(xùn)練(或?qū)W習(xí))和推斷(或預(yù)測(cè)),它們指的是發(fā)展和生產(chǎn)。開(kāi)發(fā)人員選擇神經(jīng)網(wǎng)絡(luò)的層數(shù)和類(lèi)型,訓(xùn)練確定權(quán)值。

5、目前流行的深度神經(jīng)網(wǎng)絡(luò)有三種

5.1 多層感知器(MLP)

多層感知器(MLP)是一類(lèi)前饋人工神經(jīng)網(wǎng)絡(luò)(ANN)。MLPs模型是最基本的深度神經(jīng)網(wǎng)絡(luò),其將輸入的多個(gè)數(shù)據(jù)集映射到單一的輸出的數(shù)據(jù)集上,由一系列全連接層組成。每一層都是一組非線性函數(shù),它們是前一層所有輸出(完全連通)的加權(quán)和。功能函數(shù):wKgZomTnn3yACyMvAAAMi5_-pmo603.png

wKgaomTpvqGAE8MbAAHnnrXL7LM054.png

5.2 卷積神經(jīng)網(wǎng)絡(luò)(CNN)

卷積神經(jīng)網(wǎng)絡(luò)(CNN,或ConvNet)是另一類(lèi)深度神經(jīng)網(wǎng)絡(luò)。CNN最常用于計(jì)算機(jī)視覺(jué)。給定一系列來(lái)自現(xiàn)實(shí)世界的圖像或視頻,AI系統(tǒng)利用CNN學(xué)習(xí)自動(dòng)提取這些輸入的特征來(lái)完成特定的任務(wù),如圖像分類(lèi)、人臉認(rèn)證、圖像語(yǔ)義分割等。

與MLP中的完全連接層不同,在CNN模型中,一個(gè)或多個(gè)卷積層通過(guò)執(zhí)行卷積操作從輸入中提取簡(jiǎn)單特征。每一層都是一組非線性函數(shù),這些函數(shù)的加權(quán)和位于前一層輸出的空間附近子集的不同坐標(biāo)上,允許權(quán)重被重用。

wKgZomTpvo6AG7xWAAEKdrNexL8911.png

應(yīng)用各種卷積濾波器,CNN模型可以高水平準(zhǔn)確地捕獲輸入數(shù)據(jù),使其成為最受歡迎的計(jì)算機(jī)視覺(jué)應(yīng)用技術(shù),如圖像分類(lèi)(例如,AlexNet, VGG網(wǎng)絡(luò),ResNet, MobileNet)和目標(biāo)檢測(cè)(例如,F(xiàn)ast R-CNN, Mask R-CNN, YOLO, SSD)。AlexNet。在圖像分類(lèi)方面,作為2012年第一個(gè)贏得ImageNet挑戰(zhàn)賽的CNN, AlexNet由5個(gè)卷積層和3個(gè)全連接層組成。AlexNet需要6100萬(wàn)個(gè)權(quán)重和7.24億個(gè)mac(乘法加法計(jì)算)來(lái)對(duì)大小為227×227的圖像進(jìn)行分類(lèi)。

VGG-16。為了達(dá)到更高的精度,vg -16被訓(xùn)練為一個(gè)更深層次的16層結(jié)構(gòu),由13個(gè)卷積層和3個(gè)全連通層組成,需要1.38億權(quán)值和15.5G mac對(duì)大小為224×224的圖像進(jìn)行分類(lèi)。

GoogleNet。為了提高準(zhǔn)確性,同時(shí)減少DNN推理的計(jì)算,GoogleNet引入了一個(gè)由不同大小的過(guò)濾器組成的初始模塊。google et比vg -16具有更好的精度性能,而處理相同大小的圖像只需要700萬(wàn)權(quán)重和1.43G mac。

ResNet。最新的研究成果ResNet使用了“快捷”結(jié)構(gòu),達(dá)到了人類(lèi)平均水平的準(zhǔn)確率,前5名的錯(cuò)誤率低于5%。“捷徑”模塊用于解決訓(xùn)練過(guò)程中的梯度消失問(wèn)題,使訓(xùn)練具有更深結(jié)構(gòu)的DNN模型成為可能。

近年來(lái)CNN的準(zhǔn)確率和性能逐漸提高,應(yīng)用于人們?nèi)斯ぶ悄芤曈X(jué)任務(wù)的,超過(guò)了人類(lèi)視覺(jué)的平均水平錯(cuò)誤率低于5%。wKgZomTnn3yAX8_6AAOa_bw0Zwk001.png5.3遞歸神經(jīng)網(wǎng)絡(luò)(RNN)遞歸神經(jīng)網(wǎng)絡(luò)(RNN)是另一類(lèi)使用順序數(shù)據(jù)輸入的人工神經(jīng)網(wǎng)絡(luò)。RNN是用來(lái)解決序列輸入數(shù)據(jù)的時(shí)間序列問(wèn)題的。RNN的輸入由當(dāng)前輸入和之前的樣本組成。因此,節(jié)點(diǎn)之間的連接沿時(shí)間序列形成有向圖。RNN中的每個(gè)神經(jīng)元都有一個(gè)內(nèi)部存儲(chǔ)器,它保存著來(lái)自前一個(gè)樣本的計(jì)算信息。wKgZomTnn3yAdN0DAAFa0t3z7-k216.pngRNN模型在處理輸入長(zhǎng)度不固定的數(shù)據(jù)方面具有優(yōu)勢(shì),因此在自然語(yǔ)言處理中得到了廣泛的應(yīng)用。人工智能的任務(wù)是建立一個(gè)能夠理解人類(lèi)說(shuō)的自然語(yǔ)言的系統(tǒng),例如自然語(yǔ)言建模、單詞嵌入和機(jī)器翻譯。

在RNN中,每一層都是輸出和前一層狀態(tài)的加權(quán)和的非線性函數(shù)集合。RNN的基本單元稱(chēng)為“Cell”,每個(gè)Cell層由一系列的Cell組成,層層傳遞處理使RNN模型能夠進(jìn)行順序處理。


6、深度神經(jīng)網(wǎng)絡(luò)應(yīng)用

深度學(xué)習(xí)現(xiàn)在已經(jīng)應(yīng)用到生活各領(lǐng)域:

1.深度學(xué)習(xí)應(yīng)用在音視頻的識(shí)別上,幾乎所有的商用語(yǔ)音識(shí)別都是深度學(xué)習(xí)來(lái)完成的,如自然語(yǔ)言理解方面,主要是使用一種叫做LSTM的深度學(xué)習(xí)方法。

2.深度學(xué)習(xí)應(yīng)用于圖像識(shí)別,目前識(shí)別準(zhǔn)確率已經(jīng)超越人類(lèi),深度學(xué)習(xí)成了圖像識(shí)別的標(biāo)配。其中圖像識(shí)別中,應(yīng)用最廣的是人臉識(shí)別。

總之深度神經(jīng)網(wǎng)絡(luò)已經(jīng)深入便捷了人們生活,各類(lèi)自動(dòng)駕駛車(chē)輛,各種類(lèi)型的人工智能機(jī)器人,智能回答,智能翻譯,天氣預(yù)報(bào),股票預(yù)測(cè),人臉比對(duì),聲紋比對(duì),等其他許多有趣的應(yīng)用,比如智能插畫(huà),自動(dòng)作詩(shī),自動(dòng)寫(xiě)作文,等都可以通過(guò)深度學(xué)習(xí)來(lái)完成深度神經(jīng)網(wǎng)絡(luò)。

END

歡迎加入Imagination GPU與人工智能交流2群

wKgZomTnn32ATq_bAABN8aBfIqc717.jpg

入群請(qǐng)加小編微信:eetrend89

(添加請(qǐng)備注公司名和職稱(chēng))

推薦閱讀 對(duì)話(huà)Imagination中國(guó)區(qū)董事長(zhǎng):以GPU為支點(diǎn)加強(qiáng)軟硬件協(xié)同,助力數(shù)字化轉(zhuǎn)型

Imagination攜手飛槳等多家伙伴聯(lián)合發(fā)布 AI Studio硬件生態(tài)專(zhuān)區(qū)

wKgZomTnn32ANuTYAAGo5T4MzkM492.jpg

Imagination Technologies是一家總部位于英國(guó)的公司,致力于研發(fā)芯片和軟件知識(shí)產(chǎn)權(quán)(IP),基于Imagination IP的產(chǎn)品已在全球數(shù)十億人的電話(huà)、汽車(chē)、家庭和工作 場(chǎng)所中使用。獲取更多物聯(lián)網(wǎng)、智能穿戴、通信汽車(chē)電子、圖形圖像開(kāi)發(fā)等前沿技術(shù)信息,歡迎關(guān)注 Imagination Tech!


原文標(biāo)題:淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

文章出處:【微信公眾號(hào):Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。


聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • imagination
    +關(guān)注

    關(guān)注

    1

    文章

    598

    瀏覽量

    62041
收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    ),是一多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過(guò)逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?746次閱讀

    殘差網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)

    殘差網(wǎng)絡(luò)(Residual Network,通常簡(jiǎn)稱(chēng)為ResNet) 是深度神經(jīng)網(wǎng)絡(luò)的一 ,其獨(dú)特的結(jié)構(gòu)設(shè)計(jì)在解決深層網(wǎng)絡(luò)訓(xùn)練中的梯度消失
    的頭像 發(fā)表于 07-11 18:13 ?1522次閱讀

    神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點(diǎn)

    神經(jīng)網(wǎng)絡(luò)模型是一常見(jiàn)的深度學(xué)習(xí)模型,它由輸入層、兩個(gè)隱藏層和輸出層組成。本文將介紹神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-11 10:58 ?1001次閱讀

    簡(jiǎn)單認(rèn)識(shí)深度神經(jīng)網(wǎng)絡(luò)

    深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)作為機(jī)器學(xué)習(xí)領(lǐng)域中的一重要技術(shù),特別是在深度學(xué)習(xí)領(lǐng)域,已經(jīng)取得了顯著的成就。它們通過(guò)模擬人類(lèi)大腦的處理方式,利用多
    的頭像 發(fā)表于 07-10 18:23 ?1865次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能
    的頭像 發(fā)表于 07-05 09:52 ?959次閱讀

    深度神經(jīng)網(wǎng)絡(luò)概述及其應(yīng)用

    深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)作為機(jī)器學(xué)習(xí)的一復(fù)雜形式,是廣義人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANNs)的
    的頭像 發(fā)表于 07-04 16:08 ?2744次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩非常重要的
    的頭像 發(fā)表于 07-04 14:24 ?1949次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指?jìng)鹘y(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時(shí),我們需
    的頭像 發(fā)表于 07-04 13:20 ?1692次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks, RNN)是兩
    的頭像 發(fā)表于 07-03 16:12 ?5424次閱讀

    BP神經(jīng)網(wǎng)絡(luò)屬于DNN嗎

    屬于。BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一基于誤差反向傳播算法的多層前饋神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)(Deep Learning)領(lǐng)域中非常重要的
    的頭像 發(fā)表于 07-03 10:18 ?1212次閱讀

    bp神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一常見(jiàn)的前饋神經(jīng)網(wǎng)絡(luò),它使用反向傳播算法來(lái)訓(xùn)練網(wǎng)絡(luò)。雖然BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:14 ?1312次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱(chēng)CNN)是一深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 09:15 ?870次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱(chēng)CNN)是一深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的原
    的頭像 發(fā)表于 07-02 14:44 ?1237次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱(chēng)CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡(jiǎn)稱(chēng)BPNN)是兩
    的頭像 發(fā)表于 07-02 14:24 ?5946次閱讀

    深度神經(jīng)網(wǎng)絡(luò)模型有哪些

    深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,DNNs)是一類(lèi)具有多個(gè)隱藏層的神經(jīng)網(wǎng)絡(luò),它們?cè)谠S多領(lǐng)域取得了顯著的成功,如計(jì)算機(jī)視覺(jué)、自然語(yǔ)言處理、語(yǔ)音識(shí)別等。以下是一些常見(jiàn)的深度
    的頭像 發(fā)表于 07-02 10:00 ?2328次閱讀
    主站蜘蛛池模板: 99精品偷自拍 | 日本大黄视频 | 在线免费观看色视频 | 天堂bt种子资源+在线 | 一日本道加勒比高清一二三 | 伊人久久大香线蕉综合爱婷婷 | 亚洲人成在线精品 | se在线播放| 亚洲一区免费观看 | 大色综合色综合资源站 | 7799国产精品久久久久99 | 国产精品理论 | 都市激情综合 | 高清国产下药迷倒美女 | 成年女人毛片 | 五月天丁香婷婷开心激情五月 | 天天看天天干天天操 | 四虎影城库 | 日本高清视频色wwwwww色 | 深夜视频在线观看免费 | 久久天天躁狠狠躁夜夜躁 | 一级免费片 | 国模啪啪一区二区三区 | 欧美tube6最新69 | 美女喷白浆 | 欧美mv日韩mv国产mv网站 | 色爱综合网 | 一区二区三区高清不卡 | 亚洲人的天堂男人爽爽爽 | 狠狠色欧美亚洲狠狠色www | 黄色的视频网站 | 在线jlzzjlzz免费播放 | 三级视频在线播放线观看 | 在线观看黄色网 | 五月婷激情 | 婷婷四房综合激情五月性色 | 你懂的在线观看网址 | 久久这里只有精品免费播放 | 亚洲色图21p | 女人色视频 | 无毒不卡在线观看 |