本產品是國內首創自主研發的高質量二維氮化硼納米片,成功制備了大面積、厚度可控的二維氮化硼散熱膜,具有透電磁波、高導熱、高柔性、低介電系數、低介電損耗等多種優異特性,解決了當前我國電子封裝及熱管理領域面臨的“卡脖子”問題,擁有國際先進的熱管理TIM解決方案及相關材料生產技術,是國內低維材料技術領域頂尖的創新型高科技產品。
什么是5G?
一
定義
“5G”一詞通常用于指代第5代移動網絡。5G是繼之前的標準(1G、2G、3G、4G 網絡)之后的最新全球無線標準,并為數據密集型應用提供更高的帶寬。除其他好處外,5G有助于建立一個新的、更強大的網絡,該網絡能夠支持通常被稱為 IoT 或“物聯網”的設備爆炸式增長的連接——該網絡不僅可以連接人們通常使用的端點,還可以連接一系列新設備,包括各種家用物品和機器。
公認的5G優勢是:
?具有更高可用性和容量的更可靠的網絡
?更高的峰值數據速度(多Gbps)
?超低延遲
與前幾代網絡不同,5G網絡利用在26GHz 至40GHz范圍內運行的高頻波長(通常稱為毫米波)。由于干擾建筑物、樹木甚至雨等物體,在這些高頻下會遇到傳輸損耗,因此需要更高功率和更高效的電源。
5G部署最初可能會以增強型移動寬帶應用為中心,滿足以人為中心的多媒體內容、服務和數據接入需求。增強型移動寬帶用例將包括全新的應用領域、性能提升的需求和日益無縫的用戶體驗,超越現有移動寬帶應用所支持的水平。
二
毫米波是關鍵技術
毫米波通信是未來無線移動通信重要發展方向之一,目前已經在大規模天線技術、低比特量化ADC、低復雜度信道估計技術、功放非線性失真等關鍵技術上有了明顯研究進展。但是隨著新一代無線通信對無線寬帶通信網絡提出新的長距離、高移動、更大傳輸速率的軍用、民用特殊應用場景的需求,針對毫米波無線通信的理論研究與系統設計面臨重大挑戰,開展面向長距離、高移動毫米波無線寬帶系統的基礎理論和關鍵技術研究,已經成為新一代寬帶移動通信最具潛力的研究方向之一。
毫米波的優勢:毫米波由于其頻率高、波長短,具有如下特點:
頻譜寬,配合各種多址復用技術的使用可以極大提升信道容量,適用于高速多媒體傳輸業務;可靠性高,較高的頻率使其受干擾很少,能較好抵抗雨水天氣的影響,提供穩定的傳輸信道;方向性好,毫米波受空氣中各種懸浮顆粒物的吸收較大,使得傳輸波束較窄,增大了竊聽難度,適合短距離點對點通信;波長極短,所需的天線尺寸很小,易于在較小的空間內集成大規模天線陣。
毫米波的缺點:毫米波也有一個主要缺點,那就是不容易穿過建筑物或者障礙物,并且可以被葉子和雨水吸收,對材料非常敏感。這也是為什么5G網絡將會采用小基站的方式來加強傳統的蜂窩塔。
什么是TIM熱管理?
定義
熱管理?顧名思義,就是對“熱“進行管理,英文是:Thermal Management。熱管理系統廣泛應用于國民經濟以及國防等各個領域,控制著系統中熱的分散、存儲與轉換。先進的熱管理材料構成了熱管理系統的物質基礎,而熱傳導率則是所有熱管理材料的核心技術指標。
導熱率,又稱導熱系數,反映物質的熱傳導能力,按傅立葉定律,其定義為單位溫度梯度(在1m長度內溫度降低1K)在單位時間內經單位導熱面所傳遞的熱量。熱導率大,表示物體是優良的熱導體;而熱導率小的是熱的不良導體或為熱絕緣體。
5G手機以及硬件終端產品的小型化、集成化和多功能化,毫米波穿透力差,電子設備和許多其他高功率系統的性能和可靠性受到散熱問題的嚴重威脅。要解決這個問題,散熱材料必須在導熱性、厚度、靈活性和堅固性方面獲得更好的性能,以匹配散熱系統的復雜性和高度集成性。
一
5G時代高功率、高集成、高熱量趨勢明顯,熱管理成為智能手機“硬需求”
一代通信技術,一代手機形態,一代熱管理方案。通信技術的演進,會持續引發移動互聯網應用場景的變革,并推動手機芯片和元器件性能快速提升。但與此同時,電子器件發熱量迅速增加,對手機可靠性和移動互聯網發展帶來了嚴峻挑戰。從4G時代進入5G時代,智能手機芯片性能、數據傳輸速率、射頻模組等都有著巨大提升,無線充電、NFC等功能逐漸成為標配,手機散熱壓力持續增長。5G手機散熱的主流方案,高導熱材料、并加速向超薄化、結構簡單化和低成本方向發展,技術迭代正在加速進行。未來隨著5G終端產品進一步放量,TIM市場增長潛力巨大。
2020年,5G技術邁向全面普及,消費電子產品向高功率、高集成、輕薄化和智能化方向加速發展。由于集成度、功率密度和組裝密度等指標持續上升,5G時代電子器件在性能不斷提升的同時,工作功耗和發熱量急遽升高。據統計,電子器件因熱集中引起的材料失效占總失效率的65-80%。為避免過熱帶來的器件失效,導熱硅脂、導熱凝膠、石墨導熱片、熱管和均熱板(VC)等技術相繼出現、持續演進,散熱管理已經成為5G時代電子器件的“硬需求”。
根據EUCNC數據,LTE智能手機功耗主要來源于功率放大器、應用處理器、屏幕和背光、信號收發器和基帶處理器。隨著消費電子產品向高集成、輕薄化和智能化方向發展,芯片和元器件體積不斷縮小,功率密度卻在快速增加,智能手機的散熱需求成為亟需解決的問題:
(1)芯片性能更高,四核、八核成為主流;
(2)柔性顯示、全面屏逐漸普及,2K/4K屏占領高端市場;
(3)內置更多無線功能,例如NFC、GPS、藍牙和無線充電;
(4)機身越來越薄,封裝密度越來越高。表1 手機主要熱量來源![2cb82df2-5783-11ec-a27f-dac502259ad0.png](https://file1.elecfans.com//web2/M00/9C/72/wKgaomTnyw6ATRVvAACQj-Smxwk063.png)
主要導熱材料
二
熱管/均熱板解決方案優勢顯著,超薄均熱板技術迭代進一步加速
熱管和均熱板利用熱傳導與致冷介質的快速熱傳遞性質,導熱系數較金屬和石墨材料有10倍以上提升,作為新興的散熱技術方案,近年來在智能手機領域開始獲得廣泛應用。其中,熱管的導熱系數范圍為10000~100000 W/mK,是純銅膜的20倍,是多層石墨膜10倍;均熱板作為熱管技術的升級,進一步實現了導熱系數的提升。三
氮化硼膜材特點:高導熱、低介電、絕緣、透波、抗電壓、柔性
六方氮化硼(h-BN)這種二維結構材料,名白石墨烯,看上去像著名的石墨烯材料一樣,僅有一個原子厚度。但是兩者很大的區別是六方氮化硼是一種天然絕緣體而石墨烯是一種完美的導體。與石墨烯不同的是,h-BN的導熱性能很好,可以量化為聲子形式(從技術層面上講,一個聲子即是一組原子中的一個準粒子)。
有材料專家說道:“使用氮化硼去控制熱流看上去很值得深入研究。我們希望所有的電子器件都可以盡可能快速有效地散射。而其中的缺點之一,尤其是在對于組裝在基底上的層狀材料來說,熱量在其中某個方向上沿著傳導平面散失很快,而層之間散熱效果不好,多層堆積的石墨烯即是如此。”與石墨中的六角碳網相似,六方氮化硼中氮和硼也組成六角網狀層面,互相重疊,構成晶體。晶體與石墨相似,具有反磁性及很高的異向性,晶體參數兩者也頗為相近。
基于二維氮化硼納米片的復合薄膜,此散熱膜具有透電磁波、高導熱、高柔性、高絕緣、低介電系數、低介電損耗等優異特性,是5G射頻芯片、毫米波天線領域最為有效的散熱材料之一。
四
總結
根據市場預測,2019-2025年間5G手機銷量將以72%的復合增長率擴張;到2025年,5G手機市場份額將占總市場份額的30%左右;屆時,支持毫米波頻段的5G手機將占全部5G手機的13%。盡管受疫情影響,2020年第一季度全球智能手機出貨量2.758億臺,同比下降11.7%。但高通對全年5G手機出貨量較為樂觀,維持2020年5G手機出貨預測在1.75億至2.25億部不變。-
Tim
+關注
關注
0文章
81瀏覽量
17929 -
5G
+關注
關注
1356文章
48497瀏覽量
565392
發布評論請先 登錄
相關推薦
為什么WBG材料是5G系統未來發展的關鍵?
![為什么WBG<b class='flag-5'>材料</b>是<b class='flag-5'>5G</b>系統未來發展的關鍵?](https://file1.elecfans.com/web1/M00/F3/DD/wKgaoWcgTgCAcIGUAAA6uoOuDd4026.png)
共創AI+時代 廣和通攜5G AIoT解決方案智赴2024中國移動全球合作伙伴大會
![共創AI+<b class='flag-5'>時代</b> 廣和通攜<b class='flag-5'>5G</b> AIoT解決<b class='flag-5'>方案</b>智赴2024中國移動全球合作伙伴大會](https://file1.elecfans.com//web2/M00/09/51/wKgZomcJ1GSAbXOLAAYnCoCf6So374.jpg)
共創AI+時代 | 廣和通攜5G AIoT解決方案智赴2024中國移動全球合作伙伴大會
![共創AI+<b class='flag-5'>時代</b> | 廣和通攜<b class='flag-5'>5G</b> AIoT解決<b class='flag-5'>方案</b>智赴2024中國移動全球合作伙伴大會](https://file1.elecfans.com/web2/M00/0A/3C/wKgaomcJ1EeAJ-a0AAEhXE05GoU132.png)
5G設備運維管理平臺是什么
有行鯊魚SY-2571聚氨酯導熱灌封材料,可靠的熱管理解決方案
![有行鯊魚SY-2571聚氨酯導熱灌封<b class='flag-5'>材料</b>,可靠的<b class='flag-5'>熱管理解決方案</b>](https://file1.elecfans.com/web2/M00/FF/5A/wKgaomaiEbeAB0jkAAC1_M7y0Ds995.png)
5G賦能新能源,工業5G路由器實現充電樁遠程高效管理
![<b class='flag-5'>5G</b>賦能新能源,工業<b class='flag-5'>5G</b>路由器實現充電樁遠程高效<b class='flag-5'>管理</b>](https://file1.elecfans.com/web2/M00/FE/A0/wKgaomaeKKqAdqKAAADkbXqA6tk733.png)
嵌入式設備中的4G/5G模塊管理
熱管理需求顯著增加!VC和熱管的優勢在哪里?
![<b class='flag-5'>熱管理</b>需求顯著增加!VC和<b class='flag-5'>熱管</b>的優勢在哪里?](https://file1.elecfans.com//web2/M00/FC/40/wKgaomaQqP2AQf9VAAHB7EwYPPQ823.jpg)
請問mx880 5G數據終端可以設置優先5G網絡嗎?
5G技術的熱管理挑戰與解決方案:高性能材料的創新應用
MPI 5G手機天線新材料的應用及焊接制造
![MPI <b class='flag-5'>5G</b>手機天線<b class='flag-5'>新材料</b>的應用及焊接制造](https://file1.elecfans.com/web2/M00/D5/A8/wKgaomYmCpiAc-1UAAC_Hs2qo8A931.png)
新能源汽車電池熱管理中陶瓷材料的應用
![新能源汽車電池<b class='flag-5'>熱管理</b>中陶瓷<b class='flag-5'>材料</b>的應用](https://file.elecfans.com/web2/M00/3F/D6/poYBAGJqO-mASPG4AAAes7JY618194.jpg)
評論