在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

6G新頻譜方向探索|6G會改變什么?|毫米波|太赫茲|光通信

英利檢測 ? 2022-10-26 17:34 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

2G改變通信

3G改變社交

4g改變生活

5g改變社會

6G會改變什么?

6G新頻譜探索

6G將要用到的新頻譜、優勢、所面臨的技術挑戰、解決挑戰的研究方向等如何?

下面我們來解析歐盟6G旗艦項目Hexa-X、歐盟5G-PPP SELFNET項目、德國聯邦教育和研究部(BMBF)TACNET4.0項目的相關研究成果。

6G蜂窩網絡將提供良好的異構無線接入技術(RAT)能力,其中具有低射頻的傳統RAT和視距(LOS)相關RAT(太赫茲、VLC頻段和OWC頻段)可以共存。

THz、VLC和OWC可以在分層RAN架構(例如微微小區)中構建一個新的層,其中具有不同RAT的異構小區相互重疊。

其形態類似于在5G網絡中引入毫米波。

一、毫米波

毫米波技術已由5G新空口部分地引入,并被認為仍是未來6G網絡的重要組成部分。

與在6GHz以下工作的傳統射頻技術相比,毫米波6G將通過高達300 GHz的新載波頻率顯著拓寬可用帶寬。

正如香農定理所揭示的那樣,如此巨大的新帶寬將極大提升無線電信道容量并滿足未來新興應用對更高數據速率的迫在眉睫的渴望。

同時,更短的波長也使得天線尺寸更小。

這不僅提高了設備的便攜性和集成度,還可以增加天線陣列的尺寸,從而縮小波束,有利于檢測雷達和物理層安全等特定應用。

此外,大氣和分子吸收在整個毫米波頻段的不同頻率上表現出高度不同的特性,為各種用例提供潛力。

一方面,在35GHz、94GHz、140GHz、220GHz等一些特殊頻段可以觀察到低衰減,使得在這些頻率下進行長距離對等通信成為可能;另一方面,在某些“衰減峰值”頻段(例如60 GHz、120 GHz和180 GHz)處會出現嚴重的傳播損耗,這可以被具有嚴格安全要求的短距離隱蔽網絡所利用。

目前,毫米波領域的標準化工作主要集中于在室內使用的60 GHz頻段,例如ECMA-387、IEEE 802.15.3c和IEEE 802.11ad

毫米波技術也帶來了新的挑戰。

首先,毫米波頻段的寬帶寬和高傳輸功率會導致嚴重的非線性信號失真,這對集成電路提出了比射頻器件更高的技術要求。

同時,由于毫米波的有效傳輸范圍(特別是在60 GHz頻段)受到大氣和分子吸收的嚴重限制,毫米波信道通常以LOS路徑為主。

這個主要的缺點在這個短波長處的較差衍射進一步放大,在車輛、行人甚至用戶自身人體等小規模障礙物密集存在的場景中,這會導致強烈的阻塞損耗。

高傳播損耗和LOS依賴性也顯著提高了信道狀態對移動性的敏感性,即衰落的影響比射頻頻段中的影響要強得多。

因此,對出色的移動性管理的需求變得空前高漲。

此外,在密集鏈路共存的場景下,尤其是在室內環境中,不同接入點之間的干擾會很大,因此需要研發高效的干擾管理方法。

二、太赫茲通信

盡管目前有豐富的頻譜冗余,但毫米波幾乎不足以解決未來十年日益增長的帶寬不足問題。

展望6G時代,工作在更高頻率(如太赫茲或光頻段)的無線技術有望在下一代RAN中發揮重要作用,提供極高的帶寬。

與毫米波類似,太赫茲波也存在高路徑損耗,因此高度依賴定向天線和LOS信道,僅能提供非常有限的覆蓋范圍。

但是,當有令人滿意的LOS鏈路可用時,高載頻帶來的帶寬明顯高于任何傳統技術,這使得同時提供吞吐量、時延和可靠性方面的超高性能成為可能。

此外,與工作在較低頻率的毫米波系統和工作在較高頻段的無線光學系統相比,太赫茲通信系統對大氣效應不敏感,從而可簡化波束賦型和波束跟蹤的任務。

除了針對特定用例(例如室內通信和無線回傳)的主流射頻技術之外,太赫茲通信被塑造成一個很好的補充解決方案以及具有極端服務質量(QoS)要求的未來網絡物理應用的競爭選擇(例如實時VR/AR)。

此外,高載波頻率還使得天線的尺寸更小以實現更高的集成度。

預計在單個太赫茲6G基站中可以嵌入超過10000根天線,并且提供數百個超窄波束,從而克服高傳播損耗,同時實現極高的流量容量和海量連接,從而構成其在超大規模機器類型通信中的應用,例如萬物互聯(IoE)。

盡管如此,雖然太赫茲在許多方面優于毫米波,但太赫茲6G也面臨著更大的技術挑戰,尤其是在實現基本硬件電路(包括天線、放大器和調制器)方面。

特別是,長期以來,用集成電路將基帶信號有效地調制到這種高頻載波上一直是太赫茲技術實際部署的最關鍵挑戰。

為了解決這個問題,一些研究機構在過去的十年中做出了巨大的努力,其中主要涉及混頻的固態太赫茲系統。

最近,在太赫茲系統中應用空間直接調制以便將基帶信號直接調制到太赫茲頻段(而無需任何中頻)開始受到研究者的關注。

三、可見光通信(VLC)

VLC工作在400 THz到800 THz的頻率范圍內。

與使用較低太赫茲范圍內的射頻技術不同,VLC依賴照明源——尤其是發光二極管LED以及圖像傳感器光電二極管陣列來實現收發器

使用這些收發器,可以輕松地以低功耗(100毫瓦 10Mbps至100Mbps)實現高帶寬,而不會產生電磁或無線電干擾。

主流LED的良好功率效率、長壽命(長達10年)和低成本,以及可以使用非授權頻段,使VLC成為對電池壽命和頻譜使用成本敏感的用例的有吸引力的解決方案,例如大規模物聯網和無線傳感器網絡(WSN)。

此外,VLC在一些非地面場景(例如航空航天和水下。這些可能是未來6G生態系統的重要組成部分)中也表現出比RF技術更好的傳播性能。

與RF相比,VLC中的MIMO增益非常脆弱(尤其是在室內場景中)。

這源于傳播路徑之間的高相干性,即低空間分集。

雖然這種相干性可以通過使用間隔LED陣列以某種方式降低,但MIMO-VLC也受到接收器設計和實施的挑戰:非成像接收器對它們與發射器的空間對齊極為敏感,而成像接收器在成本上不適用。

因此,盡管十年來學術界不斷努力,但迄今為止還沒有將MIMO方法標準化到IEEE 802.15.7的主流VLC物理層。因此,VLC中的波束賦型與基于MIMO的射頻波束賦型不同,它是通過一種稱為空間光調制器(SLM)的特殊光學設備來實現的。

與毫米波和太赫茲技術類似,VLC也依賴于LOS信道,因為它既沒有穿透能力,也沒有足夠的衍射來繞過常見類型的障礙物。

同時,由于擔心相鄰小區干擾和幾乎無處不在的環境光噪聲,VLC系統通常需要具有窄波束的定向天線。

這些事實使得VLC系統對用戶的位置和移動性高度敏感,從而對波束跟蹤提出了很高的要求。另一方面,這個特性也使得VLC可以在某些使用場景中發揮優勢,例如更好的室內定位精度和更低的車載通信干擾。

VLC的另一個關鍵技術挑戰源于對可見光譜的開放和不受監管(更具體地說是“無法監管”),與傳統蜂窩系統相比,這意味著更高的安全風險,對VLC系統提出更嚴格的安全要求。

對此,物理層安全作為一種有前途的解決方案已被廣泛研究。

四、光無線通信(OWC)

OWC是指使用紅外線(IR)、可見光或紫外線(UV)作為傳輸介質的無線通信

對于在射頻頻段上運行的傳統無線通信來說,它是一種很有前途的補充技術。

在可見波段工作的OWC系統通常被稱為VLC,它最近引起了很多關注,并在上文第3部分中單獨討論。

無需全球通信監管機構的許可,光頻段就可以提供幾乎無限的帶寬。

由于光發射器和檢測器的可用性,它可以用于以低成本實現高速接入。

由于紅外線和紫外線波具有與可見光相似的行為,因此可以顯著限制安全風險和干擾,并且可以消除無線電輻射對人體健康的潛在影響。

預計在智能交通系統中的車載通信、飛機乘客照明、對電磁干擾敏感的醫療機器等部署場景中具有明顯優勢。

盡管OWC具有上述優勢,但它也受到環境光噪聲、大氣損耗、LED非線性、多路徑色散和指向錯誤等缺陷的影響。

在OWC中,使用LED或激光二極管(LD)在發射器處將電信號轉換為光信號,而接收器則使用光電二極管(PD)將光信號轉換為電信號。

通過廣泛使用的方案,如開關鍵控或脈沖位置調制,以及先進的多載波方案(如OFDM),可簡單地調制光脈沖的強度來傳遞信息,以獲得更高的傳輸速率。

為了在單個光接入點支持多個用戶,OWC不僅可以應用典型的時分、頻分、碼分多址等電復用技術,還可以應用波分多址等光復用技術。

光學MIMO技術也在OWC中實施,其中應用了多個LED和多個PD---就像在RF頻帶中運行的典型MIMO系統一樣。

應用圖像傳感器檢測光脈沖的光學系統也被稱為光學相機系統。圖像傳感器可以將光信號轉換為電信號,由于內置攝像頭的智能手機的廣泛普及,它具有“更容易實現”這一優點。

另一方面,地面點對點OWC也被稱為自由空間光通信(FSO)。

在發射器處使用高功率高集中激光束,FSO系統可以實現高數據速率,即每波長10 Gbps,遠距離傳輸(長達10000公里)。

它為地面網絡中的回傳瓶頸提供了一種經濟高效的解決方案,實現了空間、空中和地面平臺之間的交叉鏈接,并促進了新興LEO衛星星座的高容量星間鏈路。

此外,由于用于非視距紫外通信的固態光發射器和檢測器取得了最新進展,OWC有望提供廣泛的覆蓋范圍和高安全性。

五、6G動態頻譜管理(DSM)

除了在更高頻率上不斷挖掘未使用的頻譜之外,業界對6G帶寬繁榮的愿景還有第二種方法——通過DSM提高無線電資源利用率。

有關DSM的想法可以追溯到IEEE 802.11中應用的著名的會話前偵聽(LBT)協議,該協議在基于競爭的頻譜訪問控制中平等地對待所有用戶。

在免授權的工業、科學和醫療(ISM)頻段,LBT在碰撞和干擾控制方面取得了巨大成功。

同時,在授權頻譜方面,“受監管接入”導致的頻譜利用不足,比頻譜的物理稀缺性更重要。

這一事實引起了學術界對具有異構RAT和不同優先級以訪問許可/未許可頻段的各種系統之間類似LBT的動態頻譜共享領域的強烈研究興趣。

在軟件定義無線電技術的成功發展的激勵下,這些研究工作催生了認知無線電(CR)技術,并在本世紀的第一個十年迅速成熟。

自LTE時代以來,研究授權蜂窩系統和非授權ISM頻段技術共存下的DSM已成為無線網絡領域的一個熱門課題。

對于未來的6G系統,對DSM的需求變得前所未有的迫切。

一方面,無線接入ISM頻段(尤其是IEEE 802.11頻段)幾乎成為當今主流蜂窩終端的標準功能,成為在用戶密集場景下提供更大網絡容量的通用解決方案。

另一方面,由于不可能將6G新頻譜的寬頻帶保留給許可使用(尤其是可見光頻譜),預計6G系統在其頻譜的未許可部分將受到無處不在的干擾。

其他系統和環境噪聲是高度動態的和環境相關。

因此,6G系統必須能夠根據瞬時情況動態來認知地選擇最合適的工作頻段。

6G DSM面臨著許多技術挑戰。

在硬件實現上,6G新頻譜的廣泛性導致設計具有動態全頻譜感知能力的收發器存在困難。

6G前端必須能夠在超寬的6G頻段上進行快速高效的頻譜感知,從而實現在線無線電環境認知和頻譜接入的及時適應。

在系統層面,為了提高DSM的效率和安全性,基于頻譜感知的物理層CR需要通過對信息物理層上下文信息的感知來進一步完成,以獲得對通信環境(包括地形場景、通信模式、當地法規等)的更深入的理解。

這導致了上下文感知的各個方面(從數據供應到數據所有權)的挑戰。

以上信息由英利檢測(Teslab)整理發布,如有出入請及時指正,歡迎一起討論,我們一直在關注其發展,如有引用也請注明出處。

我們在無線通信產品認證領域服務既深入又廣泛,這將是一家業內最為優秀第三方認證服務商之一!|國家高新技術企業 |專業的人做專業的事 | 本本分分

|:::┆GCF┆PTCRB┆VERIZON┆ATT┆TMO┆CCC┆SRRC┆CTA┆JATE┆TELEC┆BQB┆:::

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 通信
    +關注

    關注

    18

    文章

    6187

    瀏覽量

    137518
  • 6G
    6G
    +關注

    關注

    7

    文章

    481

    瀏覽量

    42726
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    從 4G6G:高頻板材料與工藝的革新之路

    組件,其性能直接影響著通信質量和效率。本文捷多邦將探討從 4G 躍遷到 6G 過程中高頻板市場的技術發展趨勢,并分享一些設計經驗和行業洞察。 一、技術演進與市場需求 更高頻率與更寬帶寬: 6G
    的頭像 發表于 05-26 14:16 ?134次閱讀

    6G亞太赫茲通信測試解決方案

    近日,國內首臺赫茲/6G大容量無線超網基站在石家莊鐵塔公司試點成功,這標志著中國在赫茲無線通信
    的頭像 發表于 04-24 16:45 ?471次閱讀
    <b class='flag-5'>6G</b>亞太<b class='flag-5'>赫茲</b><b class='flag-5'>通信</b>測試解決方案

    紫光展銳亮相2025全球6G技術與產業生態大會

    近日,全球6G技術與產業生態大會(簡稱“全球6G技術大會”)在南京召開。紫光展銳應邀出席“空天地一體化與數字低空”平行論壇,并從6G通信、感知、定位等多方面分享了紫光展銳在
    的頭像 發表于 04-18 16:34 ?383次閱讀

    6G通信技術和5G有哪些不同?

    6G通信技術相較于5G通信技術,在多個方面都有顯著的不同和提升。以下是對6G與5G
    的頭像 發表于 04-17 16:34 ?1149次閱讀

    新知|為什么6G選擇赫茲頻段?揭秘下一代通信的“超級縫合怪”戰略

    一、技術極限倒逼:香農定理下的帶寬革命根據香農定理,信道容量與帶寬和信噪比直接相關。5G毫米波頻段(如28GHz)僅能提供約1GHz的帶寬,而赫茲頻段(如1000GHz附近)的潛在
    的頭像 發表于 03-21 11:24 ?923次閱讀
    新知|為什么<b class='flag-5'>6G</b>選擇<b class='flag-5'>太</b><b class='flag-5'>赫茲</b>頻段?揭秘下一代<b class='flag-5'>通信</b>的“超級縫合怪”戰略

    ALN4000-10-3530毫米波低噪聲放大器WENTEQ

    ℃~+125℃ 應用領域 雷達系統:用于毫米波雷達的前端信號放大,提升探測距離和精度。 衛星通信:作為接收機的前置放大器,提高信號接收質量。 5G/6G
    發表于 03-12 09:30

    5G6G探索下一代通信技術的差異與前景

    隨著全球通信技術的不斷進步,我們已經迎來了5G時代,而在不久的將來,6G技術也將悄然而至。從更快的速度到更低的延遲,這兩項技術為消費者和企業開辟了一個新的可能性領域,5G
    的頭像 發表于 12-27 14:01 ?1287次閱讀
    5<b class='flag-5'>G</b>與<b class='flag-5'>6G</b>:<b class='flag-5'>探索</b>下一代<b class='flag-5'>通信</b>技術的差異與前景

    6G,為什么會選擇THZ頻段?

    6G目前處于非常早期的研究階段。國際電信聯盟所期待的“網絡2030”愿景正在逐步實現。雖然該行業距離進入6G標準開發進程還有幾年的時間,但亞太赫茲(sub-THz)技術已經成為研究的重點。6G
    的頭像 發表于 12-25 15:19 ?901次閱讀
    <b class='flag-5'>6G</b>,為什么會選擇THZ頻段?

    愛立信完成6G技術試驗測試

    2024年,在工業和信息化部指導下,IMT-2030(6G) 推進組組織了本年度6G技術試驗測試。愛立信先后完成了6G通感一體化和網絡基礎架構測試。通過測試展現了愛立信在6G關鍵技術領
    的頭像 發表于 11-23 14:41 ?9583次閱讀

    6G通信技術對比5G有哪些不同?

    6G,即第六代移動通信技術,是5G之后的延伸,代表了一種全新的通信技術發展方向。與5G相比,
    的頭像 發表于 11-22 18:49 ?1449次閱讀

    紫光展銳積極推動6G創新發展

    日前,全球6G發展大會在上海舉辦。作為6G領域技術覆蓋最全面、專業水平最高、影響力最大的國際盛會,本次大會以“奮進新征程——眺望6G標準前沿”為主題,吸引了國內外移動通信領域創新企業積
    的頭像 發表于 11-22 16:42 ?747次閱讀

    羅德與施瓦茨展示創新6G超穩定可調赫茲系統

    羅德與施瓦茨(以下簡稱“R&S”)在巴黎舉辦的歐洲微波周(EuMW 2024)上展示了基于光子赫茲通信鏈路的6G無線數據傳輸系統的概念驗證,助力新一代無線技術的前沿
    的頭像 發表于 10-11 10:56 ?778次閱讀

    愛立信:6G網絡架構的三大共識

    6G正穩步向我們走來——不久前,3GPP在荷蘭確定了6G國際標準化時間表。照這一藍圖,我們有望在2030年前見證6G商業系統的誕生。6G愿景的核心是實現數字世界與物理世界的無縫融合。
    的頭像 發表于 07-23 17:57 ?1.9w次閱讀

    中國6G,國際首個!

    來源:人民日報客戶端 記者從北京郵電大學獲悉,近日,由北京郵電大學張平院士及其團隊搭建的國際首個通信與智能融合的6G外場試驗網正式對外發布。 我國率先搭建國際首個通信與智能融合的6G
    的頭像 發表于 07-15 15:51 ?884次閱讀
    中國<b class='flag-5'>6G</b>,國際首個!

    我國成功搭建國際首個通信與智能融合的6G試驗網

    我國通信領域傳來捷報:以通信與智能融合為標志的6G關鍵技術迎來新突破,4G、5G通信鏈路有望具備
    的頭像 發表于 07-11 15:28 ?1102次閱讀
    主站蜘蛛池模板: 日本不卡一区二区三区视频 | 嘿嘿嘿视频在线观看网站 | 日韩黄色成人 | 4虎影院永久地址www | 免费高清成人啪啪网站 | 香港三级理论在线观看网站 | 日韩一区二区三区免费 | 欧美午夜小视频 | 久久久久国产 | 国产精品久久永久免费 | 欧美美女被日 | 欧美成人xxxx| 天天操综| 在线种子资源网 | 欧洲精品码一区二区三区免费看 | 亚洲精品久久久久午夜 | 色视频在线观看完整免费版 | 99国产精品久久久久久久成人热 | 亚洲人成网站色7777 | 人人艹人人干 | 手机看片国产高清 | 毛片网子| 成在线人永久免费播放视频 | 狠狠色噜噜狠狠狠狠五月婷 | 四虎国产精品永久在线网址 | 亚洲bt欧美bt高清bt777 | 亚洲 欧美 视频 | 男人j桶进女人免费视频 | 亚洲图片 欧美色图 | 免费看污视频的网站 | 欧美伊人网 | 一级黄色大全 | 久久久久久国产精品免费 | 午夜男人网| 午夜一级精品免费毛片 | 日本污全彩肉肉无遮挡彩色 | 久久午夜免费视频 | 免费在线观看一区二区 | 国产在线视频你懂得 | 亚洲天堂视频一区 | 天天操天天射天天爽 |