91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-17 16:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機(jī)器學(xué)習(xí)深度學(xué)習(xí)的區(qū)別

隨著人工智能技術(shù)的不斷發(fā)展,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)已經(jīng)成為大家熟知的兩個(gè)術(shù)語。雖然它們都屬于人工智能技術(shù)的研究領(lǐng)域,但它們之間有很大的差異。本文將詳細(xì)介紹機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別。

1. 機(jī)器學(xué)習(xí)

機(jī)器學(xué)習(xí)是指通過數(shù)據(jù)使機(jī)器能夠自動(dòng)地學(xué)習(xí)和改進(jìn)性能的算法。機(jī)器學(xué)習(xí)是人工智能的一個(gè)重要分支,它通過一系列的訓(xùn)練樣本,讓機(jī)器從數(shù)據(jù)中學(xué)習(xí)規(guī)律,從而得出預(yù)測(cè)或決策。機(jī)器學(xué)習(xí)算法可以分為有監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)三種類型。

1.1 有監(jiān)督學(xué)習(xí)

有監(jiān)督學(xué)習(xí)是指在訓(xùn)練數(shù)據(jù)中有輸入和輸出的配對(duì)關(guān)系,并通過訓(xùn)練數(shù)據(jù)尋找一種通用的輸入輸出映射關(guān)系。其應(yīng)用包括圖像和語音識(shí)別、自然語言處理等。

1.2 無監(jiān)督學(xué)習(xí)

無監(jiān)督學(xué)習(xí)是指在訓(xùn)練數(shù)據(jù)中只有輸入數(shù)據(jù),但沒有明確的輸出數(shù)據(jù)和標(biāo)簽。其目的是根據(jù)輸入數(shù)據(jù)的內(nèi)在結(jié)構(gòu),發(fā)現(xiàn)隱藏在數(shù)據(jù)中的有用信息。無監(jiān)督學(xué)習(xí)算法主要包括聚類、降維和詞嵌入等。

1.3 強(qiáng)化學(xué)習(xí)

強(qiáng)化學(xué)習(xí)是指在智能體與環(huán)境交互過程中,通過試錯(cuò)方式獲得獎(jiǎng)勵(lì),并不斷優(yōu)化策略,從而達(dá)到最優(yōu)決策的過程。其應(yīng)用包括游戲、服務(wù)機(jī)器人等。

2. 深度學(xué)習(xí)

深度學(xué)習(xí)是指使用多層神經(jīng)網(wǎng)絡(luò)來學(xué)習(xí)特征和表達(dá)數(shù)據(jù),進(jìn)而達(dá)到分類、預(yù)測(cè)和聚類等任務(wù)的一種機(jī)器學(xué)習(xí)算法。深度學(xué)習(xí)的網(wǎng)絡(luò)層數(shù)可以很深,可以有數(shù)百層。

深度學(xué)習(xí)算法主要包括卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、自編碼器等。其中卷積神經(jīng)網(wǎng)絡(luò)廣泛應(yīng)用于圖像和視覺任務(wù)中,循環(huán)神經(jīng)網(wǎng)絡(luò)主要用于序列建模和語音識(shí)別,自編碼器則主要用于特征提取和降維。

深度學(xué)習(xí)的優(yōu)點(diǎn)是可以處理非常復(fù)雜的數(shù)據(jù),包括圖像、聲音、文本等。在處理大規(guī)模數(shù)據(jù)和高復(fù)雜度任務(wù)時(shí),深度學(xué)習(xí)的表現(xiàn)非常出色。

3. 機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別

3.1 神經(jīng)網(wǎng)絡(luò)層數(shù)

機(jī)器學(xué)習(xí)算法通常只涉及到少量的層次,而深度學(xué)習(xí)算法涉及到的神經(jīng)網(wǎng)絡(luò)層數(shù)可以非常深。

3.2 特征提取

機(jī)器學(xué)習(xí)中通常需要設(shè)計(jì)人為特征表示,而深度學(xué)習(xí)算法能夠自動(dòng)地學(xué)習(xí)特征。

3.3 數(shù)據(jù)量要求

由于深度學(xué)習(xí)通常需要大量的數(shù)據(jù)來訓(xùn)練模型,因此需要有足夠的數(shù)據(jù)集來支持訓(xùn)練。而機(jī)器學(xué)習(xí)則一般要求的數(shù)據(jù)量比深度學(xué)習(xí)低得多。

3.4 速度和資源消耗

深度學(xué)習(xí)的訓(xùn)練過程通常需要大量的計(jì)算資源和時(shí)間,因?yàn)榫W(wǎng)絡(luò)的復(fù)雜性非常高。而機(jī)器學(xué)習(xí)訓(xùn)練速度相對(duì)較快,資源消耗也相對(duì)較低。

4. 機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的應(yīng)用

機(jī)器學(xué)習(xí)和深度學(xué)習(xí)在實(shí)際應(yīng)用中廣泛使用。機(jī)器學(xué)習(xí)應(yīng)用包括:

- 金融領(lǐng)域:信用評(píng)分、風(fēng)險(xiǎn)管理等。
- 醫(yī)療領(lǐng)域:診斷、預(yù)測(cè)和治療等。
- 電子商務(wù):個(gè)性化推薦、欺詐檢測(cè)等。

深度學(xué)習(xí)應(yīng)用包括:

- 計(jì)算機(jī)視覺:圖像識(shí)別、物體檢測(cè)等。
- 自然語言處理:機(jī)器翻譯、文本分類、情感分析等。
- 人工智能:智能對(duì)話、自主駕駛等。

綜上所述,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是兩個(gè)不同的算法范疇,它們的應(yīng)用和局限性也有所不同。在實(shí)際應(yīng)用中,根據(jù)具體的需求,選擇合適的算法才能使技術(shù)更好地發(fā)揮作用。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進(jìn)機(jī)器人日常

    在人工智能和機(jī)器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能機(jī)器人行業(yè)邁向新的高度。最近科技圈頂流DeepSeek簡直殺瘋了!靠著逆天的
    的頭像 發(fā)表于 02-19 15:49 ?458次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢(shì),導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?538次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的定義與發(fā)展 深度
    的頭像 發(fā)表于 02-12 15:15 ?855次閱讀

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1186次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    來源:Master編程樹“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆]有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?965次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)機(jī)
    的頭像 發(fā)表于 11-15 09:19 ?1216次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?1912次閱讀

    AI干貨補(bǔ)給站 | 深度學(xué)習(xí)機(jī)器視覺的融合探索

    ,幫助從業(yè)者積累行業(yè)知識(shí),推動(dòng)工業(yè)視覺應(yīng)用的快速落地。本期亮點(diǎn)預(yù)告本期將以“深度學(xué)習(xí)機(jī)器視覺的融合探索”為主題,通過講解深度學(xué)習(xí)定義、傳統(tǒng)
    的頭像 發(fā)表于 10-29 08:04 ?575次閱讀
    AI干貨補(bǔ)給站 | <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>與<b class='flag-5'>機(jī)器</b>視覺的融合探索

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?656次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的方法

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1363次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動(dòng)駕駛、無人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 10:57 ?1066次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個(gè)熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)模型的案例: 一、基于FPGA的AlexNet卷積運(yùn)算加速 項(xiàng)目名稱
    的頭像 發(fā)表于 10-25 09:22 ?1233次閱讀

    人工智能、機(jī)器學(xué)習(xí)深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)
    發(fā)表于 10-24 17:22 ?2978次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>存在什么<b class='flag-5'>區(qū)別</b>

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2887次閱讀

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)區(qū)別

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)在多個(gè)方面存在顯著的區(qū)別。以下是對(duì)這些區(qū)別的介紹: 一、模型規(guī)模與復(fù)雜度 AI大模型 :通常包含數(shù)十億甚至數(shù)萬億的參數(shù),模型大小可以達(dá)到數(shù)百GB甚至更大。這些模
    的頭像 發(fā)表于 10-23 15:01 ?2579次閱讀
    主站蜘蛛池模板: 乱j伦小说在线阅读 | 国产精品视频久久久 | 欧美黄免在线播放 | 国产精品嫩草影院在线播放 | 美女国产一区 | 日本午夜大片免费观看视频 | 毛片爱做的片 | 老师受不了了好硬好大 | 一本大道香蕉大vr在线吗视频 | 888米奇色狠狠俺去啦 | 日本片巨大的乳456线观看 | 好吊操免费视频 | 国产精品乱码高清在线观看 | 最近国语剧情视频在线观看 | 中文天堂最新版www官网在线 | 一区二区三区视频免费观看 | 欧洲成人r片在线观看 | 奇米影视777欧美在线观看 | 天天视频入口 | 黄色大成网站 | 欧美成人午夜不卡在线视频 | 老司机精品免费视频 | 谁有毛片网站 | 国产小视频免费 | 国产精品11页| 国产美女在线免费观看 | 一区在线观看 | 成人亚洲欧美在线电影www色 | 成人人免费夜夜视频观看 | 性欧美bbbbbb | 又粗又硬又大久久久 | 丁香婷五月 | 免费观看视频在线 | 国产美女激情视频 | 日本成人视屏 | 久久久久99精品成人片三人毛片 | se97se成人亚洲网站在线观看 | 狠久久| 色视频在线免费 | 黄色美女免费网站 | 看全黄大片狐狸视频在线观看 |