在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

Chiplet真的那么重要嗎?Chiplet是如何改變半導體的呢?

信號完整性 ? 來源:XDA ? 2023-11-27 10:48 ? 次閱讀

2019年以來,半導體行業逐漸轉向新的芯片設計理念:chiplet。從表面上看,這似乎是一個相當小的變化,因為真正發生的只是芯片被分成更小的部分。另外,并不是每家公司都在這樣做,即使是這樣做的公司也沒有完全轉向芯粒。Chiplet 真的那么重要嗎?

好吧,盡管如此,芯粒對于半導體行業來說仍然非常重要。這不僅是對許多公司最近經歷的困境的反擊,而且現在 AMD英特爾在芯粒方面取得了巨大成功,他們的競爭對手肯定必須考慮效仿他們的做法,以免處于不利地位。

Chiplet 以及使用它們徹底改變處理器的兩家公司

Chiplet 顧名思義:只有部分功能的芯粒。芯粒的整體理念是,您擁有多個芯片,每個芯片都包含 CPU 的某些部分,而不是在一塊硅片(也稱為單片芯片)上制作處理器。雖然為每種功能配備一個小芯片(例如一個用于核心、一個用于連接、一個用于圖形等)是很自然的事情,但有時也希望將許多相同的芯片放入一個處理器中,這有利于添加更多核心例子。

AMD 是真正創造(或至少普及)并引入芯粒概念的公司。它在2017年的原始Zen處理器上采用了基本的多芯片模塊設計,其中高端型號利用多個CPU芯片來增加核心數量,而不是使用單個更大的芯片。但隨著 2019 年的 Zen 2,AMD 將其 CPU 一分為二:一個用于 CPU 內核的芯粒,另一個用于其他所有功能,例如 PCIe 通道和 RAM 連接器

與此同時,英特爾一直在努力追趕自己的芯粒實現,該公司將其稱為“tiles”。盡管比 AMD 更晚進入這個領域,但其首款芯粒處理器終于在今年面世,而且相當復雜。Ponte Vecchio 數據中心 GPU 有幾個充滿 GPU 核心的圖塊、幾個用于緩存的圖塊、一個用于 HBM2 VRAM 的圖塊以及另外兩個用于連接的圖塊。Meteor Lake 是主流的四塊解決方案,雖然它是筆記本電腦專用的,但其繼任者 Arrow Lake 將于明年登陸臺式機,而且非常相似。

富士通博通等其他公司已表示有意制造帶有芯粒的處理器,但迄今為止,AMD 和英特爾是唯一推出基于芯粒的產品并進行批量生產的公司。然而,特別是對于高端計算來說,轉向芯粒似乎將成為保持競爭優勢的必要條件。

Chiplet允許更智能的處理器設計

Chiplet 的迷人之處在于它們的用途多種多樣。Chiplet 不是像光線追蹤那樣的一招獨奏,也不是像 AI 那樣極其模糊或非特定的東西。芯粒具有明顯的優勢,在許多情況下,這些優勢使單片處理器完全過時。

AMD 和英特爾經常談論的Chiplet之一是如何更輕松地為某些市場和客戶提供更具體的解決方案。增加和減少核心數量,或者將一個Chiplet更換為另一種更合適的Chiplet非常簡單。例如,AMD 的服務器 CPU 不僅比臺式機型號擁有更多的 CPU 芯粒,而且還擁有更大、更好的 IO 芯片(用于連接功能)。AMD 還可以通過其3D V-Cache芯粒為消費者和服務器處理器添加另一層,進一步為買家提供更多選擇。

您可能還認為,只要它們仍然足夠好,跨代重用Chiplet是可能的,這是英特爾切片系統的關鍵優勢。AMD 擁有 CPU 核心和 IO 芯粒(加上緩存芯粒),而英特爾的區塊包括一種用于核心、一種用于圖形、一種用于 SOC 功能以及一種用于 IO 功能。雖然這對于提供這些圖塊的多個版本很有用,但英特爾的方法允許該公司在絕對必要之前不更換圖塊,因為它具有分布在更多圖塊上的更多功能。例如,如果英特爾想要更新其人工智能硬件,只需更換 SOC 模塊即可。

盡管保留舊瓷磚更長時間是為了省錢,但它也更容易證明比以前更增量地添加新功能是合理的。我們已經習慣了每隔一兩年就進行一代升級,并一次性獲得一大堆東西;Chiplet可以顯著加快升級周期。

Chiplet也改善了制造

不過,這些只是設計考慮,我們甚至還沒有進入制造階段,而Chiplet的制造成本要便宜得多。這是因為處理器生產過程中會出現缺陷,簡而言之,更大的芯片更容易出現缺陷,從而減少產量。出于同樣的原因,較小的芯片更不容易出現缺陷,以至于Chiplet實際上可以節省相當多的制造成本。在缺陷率較高的全新工藝節點中,這種影響更為明顯,這使得大芯片幾乎不可能在商業上可行。

但在制造方面,Chiplet最重要的也許是摩爾定律,該定律預測芯片中的晶體管數量每兩年就會增加一倍。這在現實世界中的實際含義有點模糊,但它非常適用于打破擁有最多晶體管記錄的處理器的高端計算。如果摩爾定律仍然像 50 年來一樣正確,那么兩年后我們應該會看到一種芯片的晶體管數量是當今最大芯片的兩倍。

公司和分析師之間關于摩爾定律是否已死的爭論非常激烈,但毫無疑問,改進工藝節點變得越來越困難,而工藝節點通過增加晶體管密度在很大程度上促進了摩爾定律的發展。雖然增加晶體管數量也可以通過制造物理尺寸更大的處理器來實現,但芯片的尺寸有一個實際限制,而我們已經達到了這個限制。因此,當臺積電的3納米技術未能將緩存密度提高哪怕1%時,這對整個行業來說都是一個非常壞的消息,并標志著摩爾定律即將消亡,甚至死亡。

Chiplet無法增加密度,但它們可以繞過尺寸限制,因為沒有任何單個芯片能夠接近該限制。一般來說,?750mm2 是最新工藝上芯片的絕對最大尺寸,但對于Chiplet來說,限制實際上是 PCB 的尺寸。AMD 最新的 Zen 4 Genoa 服務器 CPU 對于具有完整 96 核的型號而言高達 1,271mm2。

說到整個緩存問題(這可能會成為整個行業的問題),Chiplet也可以緩解這個問題。使用緩存Chiplet而不是向 CPU 或圖形Chiplet添加更多緩存當然具有使這些核心Chiplet更小、更便宜的好處,再加上 3D V-Cache 等技術的整體專業化角度,但對于制造來說還有第三個好處。如果較新的節點無法真正提高緩存密度,則可以在較舊且更便宜的節點上制作緩存Chiplet,而實際上不會損失太多性能(如果有的話)。

Chiplet 并不適合所有人,但它們將是一件大事

雖然Chiplet很棒,但它們可能不太適用于某些情況,例如智能手機芯片組等非常小的處理器或用于微波爐和家庭助理的故意簡單的芯片(至少是低端芯片)。整個半導體世界不會建立在Chiplet之上;許多通用但重要的芯片仍然是采用一些最古老和最便宜的工藝制造的。

但對于我們的筆記本電腦、臺式機、服務器、汽車和游戲機來說,Chiplet越來越有可能成為未來。當然,與 Nvidia 等公司的Chiplet相反的是,這是浪費時間,因為人工智能要好得多,以至于每兩年性能翻一番的速度很慢。因此,Nvidia 仍然以老式的方式制造 GPU(現在是 CPU),因為摩爾定律已經不再重要了。

盡管如此,就目前而言,人工智能作為一項技術還沒有得到充分發展,如果它失敗了或者空間變得極其競爭激烈,那么使用Chiplet的公司將比那些不使用Chiplet的公司更具優勢。無論半導體行業的未來如何,很難想象Chiplet技術不會成為其中的一部分。

本文轉自 XDA 網站,原文鏈接:

https://www.xda-developers.com/how-chiplets-and-tiles-are-transforming-semiconductors/






審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 處理器
    +關注

    關注

    68

    文章

    19737

    瀏覽量

    232770
  • 半導體
    +關注

    關注

    335

    文章

    28335

    瀏覽量

    229967
  • RAM
    RAM
    +關注

    關注

    8

    文章

    1384

    瀏覽量

    116326
  • 芯片設計
    +關注

    關注

    15

    文章

    1056

    瀏覽量

    55382
  • chiplet
    +關注

    關注

    6

    文章

    448

    瀏覽量

    12804

原文標題:[科普]Chiplet如何改變半導體?

文章出處:【微信號:SI_PI_EMC,微信公眾號:信號完整性】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    Chiplet與先進封裝設計中EDA工具面臨的挑戰

    Chiplet和先進封裝通常是互為補充的。Chiplet技術使得復雜芯片可以通過多個相對較小的模塊來實現,而先進封裝則提供了一種高效的方式來將這些模塊集成到一個封裝中。
    的頭像 發表于 04-21 15:13 ?224次閱讀
    <b class='flag-5'>Chiplet</b>與先進封裝設計中EDA工具面臨的挑戰

    淺談Chiplet與先進封裝

    隨著半導體行業的技術進步,尤其是摩爾定律的放緩,芯片設計和制造商們逐漸轉向了更為靈活的解決方案,其中“Chiplet”和“先進封裝”成為了熱門的概念。
    的頭像 發表于 04-14 11:35 ?254次閱讀
    淺談<b class='flag-5'>Chiplet</b>與先進封裝

    2.5D集成電路的Chiplet布局設計

    隨著摩爾定律接近物理極限,半導體產業正在向2.5D和3D集成電路等新型技術方向發展。在2.5D集成技術中,多個Chiplet通過微凸點、硅通孔和重布線層放置在中介層上。這種架構在異構集成方面具有優勢,但同時在Chiplet布局優
    的頭像 發表于 02-12 16:00 ?1013次閱讀
    2.5D集成電路的<b class='flag-5'>Chiplet</b>布局設計

    解鎖Chiplet潛力:封裝技術是關鍵

    如今,算力極限挑戰正推動著芯片設計的技術邊界。Chiplet的誕生不僅僅是技術的迭代,更是對未來芯片架構的革命性改變。然而,要真正解鎖Chiplet技術的無限潛力, 先進封裝技術 成為了不可或缺
    的頭像 發表于 01-05 10:18 ?756次閱讀
    解鎖<b class='flag-5'>Chiplet</b>潛力:封裝技術是關鍵

    Chiplet半導體的下一個前沿?

    本文由半導體產業縱橫(ID:ICVIEWS)編譯自semiconductor-digest芯片技術正以其創新的模塊化設計方法改變電子行業。半導體芯片是技術驅動世界的支柱,為從智能手機到支持云計算
    的頭像 發表于 12-30 10:53 ?423次閱讀
    <b class='flag-5'>Chiplet</b>,<b class='flag-5'>半導體</b>的下一個前沿?

    Chiplet技術革命:解鎖半導體行業的未來之門

    隨著半導體技術的飛速發展,芯片設計和制造面臨著越來越大的挑戰。傳統的單芯片系統(SoC)設計模式在追求高度集成化的同時,也面臨著設計復雜性、制造成本、良率等方面的瓶頸。而Chiplet技術的出現,為這些問題提供了新的解決方案。本文將詳細解析
    的頭像 發表于 12-26 13:58 ?848次閱讀
    <b class='flag-5'>Chiplet</b>技術革命:解鎖<b class='flag-5'>半導體</b>行業的未來之門

    Chiplet在先進封裝中的重要

    Chiplet標志著半導體創新的新時代,封裝是這個設計事業的內在組成部分。然而,雖然Chiplet和封裝技術攜手合作,重新定義了芯片集成的可能性,但這種技術合作并不是那么簡單和直接。
    的頭像 發表于 12-10 11:04 ?572次閱讀
    <b class='flag-5'>Chiplet</b>在先進封裝中的<b class='flag-5'>重要</b>性

    Chiplet改變半導體設計和制造

    在快速發展的半導體領域,小芯片技術正在成為一種開創性的方法,解決傳統單片系統級芯片(SoC)設計面臨的許多挑戰。隨著摩爾定律的放緩,半導體行業正在尋求創新的解決方案,以提高性能和功能,而不只是增加
    的頭像 發表于 12-05 10:03 ?492次閱讀
    <b class='flag-5'>Chiplet</b>或<b class='flag-5'>改變</b><b class='flag-5'>半導體</b>設計和制造

    Chiplet技術有哪些優勢

    Chiplet技術,就像用樂高積木拼搭玩具一樣,將芯片的不同功能模塊,例如CPU、GPU、內存等,分別制造成獨立的小芯片。
    的頭像 發表于 11-27 15:53 ?834次閱讀

    Chiplet將徹底改變半導體設計和制造

    本文由半導體產業縱橫(ID:ICVIEWS)編譯自IDTechEx全球Chiplet市場正在經歷顯著增長,預計到2035年將達到4110億美元。 在快速發展的半導體領域,小芯片技術正在成為一種開創性
    的頭像 發表于 11-25 09:50 ?346次閱讀
    <b class='flag-5'>Chiplet</b>將徹底<b class='flag-5'>改變</b><b class='flag-5'>半導體</b>設計和制造

    最新Chiplet互聯案例解析 UCIe 2.0最新標準解讀

    單個芯片性能提升的有效途徑?? ? 隨著半導體制程不斷逼近物理極限,越來越多的芯片廠商為了提升芯片性能和效率開始使用Chiplet技術,將多個滿足特定功能的芯粒單元通過Die-to-Die互聯技術
    的頭像 發表于 11-05 11:39 ?1768次閱讀
    最新<b class='flag-5'>Chiplet</b>互聯案例解析 UCIe 2.0最新標準解讀

    IMEC組建汽車Chiplet聯盟

    來源:芝能智芯 微電子研究中心imec宣布了一項旨在推動汽車領域Chiplet技術發展的新計劃。 這項名為汽車Chiplet計劃(ACP)的倡議,吸引了包括Arm、ASE、寶馬、博世、Cadence
    的頭像 發表于 10-15 13:36 ?498次閱讀
    IMEC組建汽車<b class='flag-5'>Chiplet</b>聯盟

    Primemas選擇Achronix eFPGA技術用于Chiplet平臺

    Chiplet (Hublet) 平臺的無晶圓廠半導體公司 Primemas 宣布合作,將 FPGA可編程性引入 Primemas 產品套件。Primemas為Primemas Hublet選擇了Achronix的Speedcore eFPGA IP,以支持需要可編程性
    的頭像 發表于 09-18 16:16 ?774次閱讀

    國產半導體新希望:Chiplet技術助力“彎道超車”!

    半導體行業,技術的每一次革新都意味著競爭格局的重新洗牌。隨著摩爾定律逐漸逼近物理極限,傳統芯片制造工藝面臨著前所未有的挑戰。在這一背景下,Chiplet(小芯片或芯粒)技術應運而生,為國產半導體
    的頭像 發表于 08-28 10:59 ?1095次閱讀
    國產<b class='flag-5'>半導體</b>新希望:<b class='flag-5'>Chiplet</b>技術助力“彎道超車”!

    原粒半導體與超摩科技達成戰略合作

    近日,科技界迎來了一場激動人心的合作。原粒半導體與超摩科技宣布建立戰略合作伙伴關系,共同探索前沿科技領域。此次合作的核心在于雙方將結合原粒半導體的高性能AI Chiplet產品與超摩科技的高性能
    的頭像 發表于 05-14 09:45 ?607次閱讀
    主站蜘蛛池模板: 男人的亚洲天堂 | 国产免费亚洲 | 综综综综合网 | www4hu| 视频在线二区 | 四虎永久地址4hu紧急入口 | 天堂网www天堂在线资源链接 | 国产福利不卡一区二区三区 | 国产一区二区播放 | 手机在线色 | 日本免费色 | 国产日韩欧美一区二区 | 久久国产免费观看精品1 | aaaa欧美高清免费 | 97精品久久天干天天蜜 | 性感美女视频黄.免费网站 性高清 | 四虎最新网址入口 | 日本在线观看成人小视频 | 日本精品视频四虎在线观看 | 男女交性高清视频无遮挡 | 91国内在线观看 | 亚洲第一狼人社区 | 国产美女一级ba大片免色 | 成人亚洲网 | 嫩草影院播放地址一二三 | 中文在线免费看影视 | a天堂资源| 欧美特级午夜一区二区三区 | 日韩黄a级成人毛片 | 九色综合九色综合色鬼 | 免费看国产一级片 | 亚洲欧美圣爱天天综合 | 久久在精品线影院精品国产 | 美女黄视频免费 | 四虎永久在线观看视频精品 | 色婷婷久久久swag精品 | 国产主播一区二区 | 中文字幕亚洲综合久久2 | 一级aa 毛片高清免费看 | 一个色在线 | 亚洲精品aaa揭晓 |