我們對g_ethercat_ssc_port0_ext_cfg這個全局變量深入追蹤,其成員變量 g_ether_PHY0,正好是一個PHY實例的詳細描述體。
/* Instance structure to use this module. */ const ether_PHY_instance_t g_ether_PHY0 = { .p_ctrl = &g_ether_PHY0_ctrl, .p_cfg = &g_ether_PHY0_cfg, .p_api = &g_ether_PHY_on_ether_PHY };
其中g_ether_PHY0_cfg是pyh實例的配置結構體:
const ether_PHY_cfg_t g_ether_PHY0_cfg = { .channel = 0, .PHY_lsi_address = 0, .PHY_reset_wait_time = 0x00020000, .mii_bit_access_wait_time = 0, // Unused .flow_control = ETHER_PHY_FLOW_CONTROL_DISABLE, .mii_type = (ether_PHY_mii_type_t) 0, // Unused .p_context = NULL, .p_extend = &g_ether_PHY0_extend };
這里又通過p_extend 做了擴展配置(其實可以合并在一起)如下所示:
const ether_PHY_extend_cfg_t g_ether_PHY0_extend = { .port_type = ETHER_PHY_PORT_TYPE_ETHER_CAT, .PHY_chip = (ether_PHY_chip_t) ETHER_PHY_CHIP_VSC8541, .mdio_type = ETHER_PHY_MDIO_GMAC, .bps = ETHER_PHY_SPEED_100, .duplex = ETHER_PHY_DUPLEX_FULL, .auto_negotiation = ETHER_PHY_AUTO_NEGOTIATION_ON, .PHY_reset_pin = BSP_IO_PORT_20_PIN_7, .PHY_reset_time = 15000, .p_selector_instance = (ether_selector_instance_t *)&g_ether_selector0, };
可以看到上面的擴展配置當中,PHY的具體硬件型號都已經列出,如PHY_chip = (ether_PHY_chip_t) ETHER_PHY_CHIP_;
可以看到在示例代碼當中已經支持的PHY如下所示:
/** Identify PHY-LSI */ typedef enum e_ether_PHY_chip { ETHER_PHY_CHIP_VSC8541 = (1 << 0), ///< VSC8541 ? ?ETHER_PHY_CHIP_KSZ9131 = (1 << 1), ///< KSZ9131 ? ?ETHER_PHY_CHIP_KSZ9031 = (1 << 2), ///< KSZ9031 ? ?ETHER_PHY_CHIP_KSZ8081 = (1 << 3), ///< KSZ8081 ? ?ETHER_PHY_CHIP_KSZ8041 = (1 << 4) ?///< KSZ8041 } ether_PHY_chip_t;
這里具體看一下 g_ether_selector0 這個 ether_selector_instance_t 類型的全局指針,指向 selector driver實例的成員變量:
typedef struct st_ether_selector_instance { ether_selector_ctrl_t * p_ctrl; ///< Pointer to the control structure for this instance ? ?ether_selector_cfg_t const * p_cfg; ?///< Pointer to the configuration structure for this instance ? ?ether_selector_api_t const * p_api; ?///< Pointer to the API structure for this instance } ether_selector_instance_t;
這又是一個類似的結構體,通過三個指針來分別指向結構本身,selector的具體配置,和配置selector過程中所需要用的的成員方法api.
看一下selector的具體配置信息:
typedef struct st_ether_selector_cfg { uint8_t port; ///< Port number ? ?ether_selector_PHYlink_polarity_t PHYlink; ///< PHY link signal polarity ? ?ether_selector_interface_t interface; ? ? ?///< Converter mode ? ?ether_selector_speed_t ? ? speed; ? ? ? ? ?///< Converter Speed ? ?ether_selector_duplex_t ? ?duplex; ? ? ? ? ///< Converter Duplex ? ?ether_selector_ref_clock_t ref_clock; ? ? ?///< Converter REF_CLK ? ?void const ? ? ? ? ? ? ? * p_extend; ? ? ? ///< Placeholder for user extension. } ether_selector_cfg_t;
可以看到selector 對應的端口號,PHY連接信號對應的極性,接口模式,速率,全雙工,以及外部時鐘輸入。再看一下配置selector的過程中所需要用到的API函數:
const ether_selector_api_t g_ether_selector_on_ether_selector = { .open = R_ETHER_SELECTOR_Open, .converterSet = R_ETHER_SELECTOR_ConverterSet, .close = R_ETHER_SELECTOR_Close, .versionGet = R_ETHER_SELECTOR_VersionGet };
其最主要的成員方法就是R_ETHER_SELECTOR_Open做了些什么:
先初始化ETHER_SELECTOR
/* One time initialization for all ETHER_SELECTOR instances. */ r_ether_selector_state_initialize(); /* Unlock write access protection for Ethernet subsystem registers */ r_ether_selector_reg_protection_disable(p_reg_ethss); /* Set the function of Ethernet ports. */ sw_mode = ETHER_SELECTOR_CFG_MODE; p_reg_ethss->MODCTRL_b.SW_MODE = sw_mode & ETHER_SELECTOR_MODCTRL_BIT_SWMODE_MASK; /* Set the MAC of all port for half-duplex. */ p_reg_ethss->SWDUPC_b.PHY_DUPLEX = 0; /* Set all Ethernet switch port to select not use 10Mbps. */ p_reg_ethss->SWCTRL_b.SET10 = 0;
根據端口號來選擇對應控制寄存器
/* Set RGMII/RMII Converter configuration */ switch (port) { case 0: { p_reg_convctrl = (uint32_t *) &p_reg_ethss->CONVCTRL[0]; break; } case 1: { p_reg_convctrl = (uint32_t *) &p_reg_ethss->CONVCTRL[1]; break; } case 2: default: { p_reg_convctrl = (uint32_t *) &p_reg_ethss->CONVCTRL[2]; break; } }
根據指向selector的配置信息:
const ether_selector_cfg_t g_ether_selector0_cfg = { .port = 0, .PHYlink = ETHER_SELECTOR_PHYLINK_POLARITY_LOW, .interface = ETHER_SELECTOR_INTERFACE_RGMII, .speed = ETHER_SELECTOR_SPEED_100MBPS, .duplex = ETHER_SELECTOR_DUPLEX_FULL, .ref_clock = ETHER_SELECTOR_REF_CLOCK_INPUT, .p_extend = NULL, };
來對CONVCTRL[port_number]寄存器做相應的配置
這里結合RZ/T2M的用戶手冊,很容易理解其中的意思:
結合代碼來看,總體ETHER_SELECTOR 的驅動的配置流程圖臺下所示:
在對ETHER_SELECTOR驅動做完配置后,下面具體看一下對ETHER_PHY_CHIP這個PHY,代碼具體做了哪些操作:
首先是做初始化:
oid ether_PHY_targets_initialize_vsc8541 (ether_PHY_instance_ctrl_t * p_instance_ctrl) { /* Vendor Specific PHY Registers */ #define ETHER_PHY_REG_LED_MODE_SELECT (0x1D) #define ETHER_PHY_REG_LED_BEHAVIOR (0x1E) #define ETHER_PHY_REG_EXTEND_GPIO_PAGE (0x1F) ...
這個初始化函數,并沒有對IEEE 標準規定的16個寄存器做讀寫操作,只對廠商自定義的寄存器做了配置。初始化完成之后,對是否打開自動協商的功能對PHY進行了讀寫:
這里可以看到對PHY芯生來說,需要配置的寄存器并不是很多,大多數情況下,把自動協商寄存器配置好,就可以了。除此之后就是廠商自定義的寄存器的一些自定義的功能。這部分功能需要結合用戶手冊來理解和使用,大部分也是用來調試和指示的作用以及一些IEEE基本標準之外的特色功能,比如節能標準之類的。
對于用戶說來,搞清楚數據結構之間的關聯,剩下的就是驅動代碼的執行邏輯,考慮到執行邏輯并不復雜,這里不展開來說。用戶可以參考錄屏材料進一步深入了解。
其它
經過驗證的PHY芯片列表:
審核編輯:劉清
-
以太網
+關注
關注
40文章
5460瀏覽量
172741 -
寄存器
+關注
關注
31文章
5363瀏覽量
121177 -
PHY
+關注
關注
2文章
305瀏覽量
51864
原文標題:工業以太網PHY驅動適配參考文檔(完結篇)
文章出處:【微信號:瑞薩MCU小百科,微信公眾號:瑞薩MCU小百科】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論