在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

低功耗碳化硅 MOSFET 的發(fā)展 | 氮化硼高導熱絕緣片

向欣電子 ? 2024-09-24 08:02 ? 次閱讀

一、前言
隨著電動汽車的發(fā)展,汽車功率器件芯片也正在尋求能夠有效處理更高工作電壓和溫度的組件。此時碳化硅 MOSFET 成為牽引逆變器等電動汽車構(gòu)建模塊的首選技術(shù)。基于碳化硅的逆變器可使高達 800V 的電氣系統(tǒng)顯著延長 EV 續(xù)航里程并將充電時間減半。據(jù)行業(yè)研究公司IHS Markit 的數(shù)據(jù),到 2025 年,全球高達 45% 的汽車生產(chǎn)將實現(xiàn)電氣化,每年將售出約 4600 萬輛電動汽車。據(jù)估計,到 2030 年,這些數(shù)字將上升到 57%,每年的電動汽車銷量約為 6200 萬輛。功率器件正從硅基 IGBT 發(fā)展至碳化硅 MOSFET 時代。碳化硅的材料特性對比硅有了顯著的提升:碳化硅材料的臨界擊穿場強為硅的近10倍,體遷移率與硅接近,帶隙寬度是硅的3倍,電子飽和漂移速度是硅的2倍,熱導率也為硅的3倍。碳化硅器件和相同電壓檔硅器件相比,厚度約為硅器件的1/10,理論上通態(tài)壓降可以大大降低,在開關(guān)速率和開關(guān)損耗上優(yōu)勢則更加明顯。

36f7004a-7a08-11ef-bb4b-92fbcf53809c.png

△ 圖1SiC、GaN與Si材料特性比較

目前為止,碳化硅 MOSFET 在通態(tài)壓降上并未對硅基 IGBT 表現(xiàn)出預期的優(yōu)勢。碳化硅MOSFET 在襯底及外延層材料遷移率、SiC/SiO2界面表面遷移率方面的表現(xiàn)還有足夠的提升空間。圖2中顯示了碳化硅 Cool MOS與硅基 IGBT 導通損耗的對比。

371f9406-7a08-11ef-bb4b-92fbcf53809c.png

△ 圖2 SiC MOSFET與SiIGBT特性比較二、碳化硅MOSFET器件比導通電阻的優(yōu)化降低碳化硅的比導通電阻,影響比導通電阻有以下幾個因素:

2.1碳化硅MOSFET的遷移率

根據(jù)在MOSFET中的位置可以分為溝道遷移率和體遷移率:當MOSFET導通時,柵極下方的溝道內(nèi)的遷移率我們稱之為溝道遷移率;在遠離柵極和材料表面的區(qū)域,我們稱之為體遷移率。溝道遷移率可通過測量MOSFET的輸出特性來得到:這里又可以將其分為(1)有效遷移率;(2)場效應遷移率;3)飽和遷移率。溝道遷移率受到SiC/SiO2界面處的許多缺陷的限制,這導致器件的場效應遷移率比其霍爾遷移率低兩個數(shù)量級。一般認為:SiC中Si的選擇性氧化導致碳沉淀并在SiO2中形成碳團簇(C-cluster),從氧化動力學角度考慮界面的化學勢發(fā)現(xiàn),界面的動態(tài)平衡性(dynamic equilibrium)限制了很高的碳化學勢,從而導致了界面C-cluster缺陷具有較低的形成能,解釋了高的界面態(tài)密度的成因,而其缺陷能級位置靠近SiC的導帶底,因此降低了載流子的遷移率。SiC MOSFET反型溝道電子主要散射機制包括:界面態(tài)電荷的庫倫散射、體晶格散射、離化雜質(zhì)庫倫散射、表面粗糙散色以及表面聲子散射。下圖為SiC MOSFET溝道處的電子散射情況:

3740d8e6-7a08-11ef-bb4b-92fbcf53809c.png

△ 圖3溝道處電子遷移率影響因素4H-SiC界面處主要由類受主缺陷對器件性能產(chǎn)生影響,庫倫遷移率決定于界面陷阱對溝道電子的散射。在降低比導通電阻方面,平面SiC MOSFET中JFET的電阻、MOSFET體電阻以及高濃度襯底電阻為總比導通電阻提供了相當大的貢獻。在降低JFET電阻方面,出現(xiàn)了從平面MOSFET向Trench MOSFET的過度。
2.2.器件結(jié)構(gòu)設計優(yōu)化降低比導通電阻其中溝道電阻:

3760ddee-7a08-11ef-bb4b-92fbcf53809c.png

其中376f17ce-7a08-11ef-bb4b-92fbcf53809c.png積累電阻:377e30e2-7a08-11ef-bb4b-92fbcf53809c.pngJFET區(qū)電阻:379441ac-7a08-11ef-bb4b-92fbcf53809c.png漂移區(qū)電阻為:37a66d96-7a08-11ef-bb4b-92fbcf53809c.png以一顆pitch 5.0μm的SiC MOSFET為例,柵氧化層厚度約450A,Vth~3.0V,LCH=0.5μm,改變柵寬來調(diào)整a的數(shù)值,在a=1μm,1.5μm,2μm條件下 ,以JFET平均濃度,漂移區(qū)厚度約10μm時:

37ba892a-7a08-11ef-bb4b-92fbcf53809c.png

△表1使用襯底1時比導通電阻構(gòu)成

37c80d34-7a08-11ef-bb4b-92fbcf53809c.png

△ 表2 使用襯底2 時比導通電阻構(gòu)成

37d8afae-7a08-11ef-bb4b-92fbcf53809c.png

△ 表3 漂移區(qū)濃度對Ronsp和Vth的影響

37f20eb8-7a08-11ef-bb4b-92fbcf53809c.png

△ 圖4SiC MOSFET電流擴展圖及JFET區(qū)域

摻雜分布外延層厚度和摻雜濃度一定的情況下:降低JFET區(qū)電阻、并優(yōu)化電流擴展區(qū)濃度對降低總比導通電阻貢獻較大,RDsp與器件襯底狀態(tài)相關(guān)性高,需達到外延摻雜濃度和厚度的折中設計。減薄襯底厚度:當減薄厚度由175μm降低到110μm時,對于常見的1200V/80mohm SiC Planar Mosfet,預計導通電阻降低3mohm左右,換算成比導通電阻降低約0.13mohm.cm2。2.3.Trench MOSFET取代Planar MOSFET降低比導通電阻

目前SiC MOSFET也正迎來從planar MOSFET向Trench MOS方向發(fā)展的趨勢,Planar MOSFET JFET區(qū)域電阻在總導通電阻中占比較大,而Trench MOS理論上不存在JFET區(qū)域。

38101a8e-7a08-11ef-bb4b-92fbcf53809c.png

△ 圖5ROHM Trench MOSFET結(jié)構(gòu)

382cb1f8-7a08-11ef-bb4b-92fbcf53809c.png

△ 圖6英飛凌Trench MOSFET結(jié)構(gòu)以ROHM代表的雙溝槽結(jié)構(gòu)和infineon為代表的半包結(jié)構(gòu)代表SiC Trench MOSFET獨立發(fā)展的兩種結(jié)構(gòu)。下圖為ROHM公司從平面結(jié)構(gòu)向Trench發(fā)展的Ron的表現(xiàn)。

384b6918-7a08-11ef-bb4b-92fbcf53809c.png

△ 圖7ROHM 平面與溝槽MOSFET結(jié)構(gòu)對比即比導通電阻比較

三、主流產(chǎn)品的性能比較下圖為目前市面上各主要大廠的MOSFET性能比較:

3865dbc2-7a08-11ef-bb4b-92fbcf53809c.png

△ 圖8各主要廠商SiC MOSFET比導通電阻比較

四、結(jié)論
碳化硅MOSFET以低損耗,高阻斷,高溫工作,開關(guān)速度快等各優(yōu)勢,不過在技術(shù)方面:SiC單晶材料雖然在導致SiC功率半導體性能和可靠性下降的致命缺陷微管密度降低和消除方面近年來取得很大進展,但位錯缺陷等其他缺陷對元件特性造成的影響仍未解決。碳化硅MOSFET器件目前存在兩個主要技術(shù)難點沒有完全突破:低反型層溝道遷移率和高溫、高電場下柵氧可靠性。在碳化硅MOSFET克服以上問題后,將迎來爆發(fā)式的增長。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    150

    文章

    8338

    瀏覽量

    218790
  • 低功耗
    +關(guān)注

    關(guān)注

    10

    文章

    2747

    瀏覽量

    104578
  • 碳化硅
    +關(guān)注

    關(guān)注

    25

    文章

    3032

    瀏覽量

    50113
收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    氮化硼導熱絕緣 | 車載充電橋OBC應用

    晟鵬公司研發(fā)的氮化硼導熱絕緣憑借其導熱性、耐高壓及輕量化等特性,在電動汽車OBC車載充電橋I
    的頭像 發(fā)表于 04-30 18:17 ?125次閱讀
    <b class='flag-5'>氮化硼</b><b class='flag-5'>導熱</b><b class='flag-5'>絕緣</b><b class='flag-5'>片</b> | 車載充電橋OBC應用

    “六邊形戰(zhàn)士”絕緣TIM材料 | 氮化硼

    引言:氮化硼,散熱界的“六邊形戰(zhàn)士”氮化硼材料的導熱+強絕緣,完美適配5G射頻芯片、新能源電池、半導體封裝等高功率場景,是高性能
    的頭像 發(fā)表于 04-05 08:20 ?286次閱讀
    “六邊形戰(zhàn)士”<b class='flag-5'>絕緣</b>TIM材料 | <b class='flag-5'>氮化硼</b>

    碳化硅MOSFET的優(yōu)勢有哪些

    碳化硅MOSFET不僅具有低導通電阻、開關(guān)速度和耐壓等顯著優(yōu)勢,還在高溫和高頻應用中展現(xiàn)出優(yōu)越的穩(wěn)定性。本文將詳細探討碳化硅
    的頭像 發(fā)表于 02-26 11:03 ?635次閱讀

    碳化硅材料的特性和優(yōu)勢

    的基本特性 高硬度和耐磨性 :SiC的硬度非常,僅次于金剛石和立方氮化硼,這使得它在磨料和耐磨涂層中非常有用。 高熱導率 :SiC的熱導率比許多其他陶瓷材料都要高,這使得它在需要快速散熱的應用中非常有價值。 高溫穩(wěn)定性 :SiC能夠在
    的頭像 發(fā)表于 01-23 17:11 ?1248次閱讀

    為什么650V SiC碳化硅MOSFET全面取代超結(jié)MOSFET和高壓GaN氮化鎵器件?

    650V SiC碳化硅MOSFET全面取代超結(jié)MOSFET和高壓GaN氮化鎵器件
    的頭像 發(fā)表于 01-23 16:27 ?682次閱讀
    為什么650V SiC<b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>全面取代超結(jié)<b class='flag-5'>MOSFET</b>和高壓GaN<b class='flag-5'>氮化</b>鎵器件?

    40mR/650V SiC 碳化硅MOSFET,替代30mR 超結(jié)MOSFET或者20-30mR的GaN!

    BASiC基本半導體40mR/650V SiC 碳化硅MOSFET,替代30mR 超結(jié)MOSFET或者20-30mR的GaN! BASiC基本半導體40mR/650V SiC 碳化硅
    發(fā)表于 01-22 10:43

    產(chǎn)SiC碳化硅MOSFET功率模塊在工商業(yè)儲能變流器PCS中的應用

    *附件:國產(chǎn)SiC碳化硅MOSFET功率模塊在工商業(yè)儲能變流器PCS中的應用.pdf
    發(fā)表于 01-20 14:19

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    隨著電力電子技術(shù)的不斷進步,碳化硅MOSFET因其高效的開關(guān)特性和低導通損耗而備受青睞,成為功率、高頻應用中的首選。作為碳化硅MOSFET
    發(fā)表于 01-04 12:37

    一種氮化硼納米增強的導熱復合材料

    W/mK)難以滿足現(xiàn)代散熱需求。研究表明,添加高熱導率填料(如石墨烯、碳納米管和氮化硼等)可以顯著提高聚合物復合材料的熱導率,但需要大量填料來建立導熱網(wǎng)絡,這通常會導致介電常數(shù)和介電損耗的增加。因此,迫切需要新的解決方
    的頭像 發(fā)表于 12-07 10:25 ?663次閱讀
    一種<b class='flag-5'>氮化硼</b>納米<b class='flag-5'>片</b>增強的<b class='flag-5'>高</b><b class='flag-5'>導熱</b>復合材料

    導熱絕緣低介電材料 | 氮化硼散熱膜

    2.27g/cm3,莫式硬度為2,具有優(yōu)良的電絕緣性、介電性能、導熱性、耐金屬熔體腐蝕性、無明顯熔點、低熱膨脹系數(shù)。在0.1MPa的分壓下,氮化硼在中性或還原氣氛中,能
    的頭像 發(fā)表于 11-15 01:02 ?1030次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>導熱</b><b class='flag-5'>高</b><b class='flag-5'>絕緣</b>低介電材料 | <b class='flag-5'>氮化硼</b>散熱膜

    Die-cutting converting 精密模切加工|氮化硼散熱膜(白石墨烯)

    基于二維氮化硼納米的復合薄膜,此散熱膜具有透電磁波、導熱柔性、
    的頭像 發(fā)表于 10-31 08:04 ?995次閱讀
    Die-cutting converting 精密模切加工|<b class='flag-5'>氮化硼</b>散熱膜(白石墨烯)

    絕緣散熱材料 | 石墨氮化硼散熱膜復合材料

    石墨氮化硼散熱膜復合材料是一種結(jié)合了石墨氮化硼散熱膜各自優(yōu)異性能的新型復合材料。一、石墨的基本特性石墨
    的頭像 發(fā)表于 10-05 08:01 ?703次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>絕緣</b>散熱材料 | 石墨<b class='flag-5'>片</b><b class='flag-5'>氮化硼</b>散熱膜復合材料

    碳化硅 (SiC) 與氮化鎵 (GaN)應用 | 氮化硼導熱絕緣

    SiC和GaN被稱為“寬帶隙半導體”(WBG)。由于使用的生產(chǎn)工藝,WBG設備顯示出以下優(yōu)點:1.寬帶隙半導體氮化鎵(GaN)和碳化硅(SiC)在帶隙和擊穿場方面相對相似。氮化鎵的帶隙為3.2eV
    的頭像 發(fā)表于 09-16 08:02 ?1267次閱讀
    <b class='flag-5'>碳化硅</b> (SiC) 與<b class='flag-5'>氮化</b>鎵 (GaN)應用  | <b class='flag-5'>氮化硼</b><b class='flag-5'>高</b><b class='flag-5'>導熱</b><b class='flag-5'>絕緣</b><b class='flag-5'>片</b>

    碳化硅氮化鎵哪種材料更好

    引言 碳化硅(SiC)和氮化鎵(GaN)是兩種具有重要應用前景的第三代半導體材料。它們具有高熱導率、電子遷移率、擊穿場強等優(yōu)異的物理化學性質(zhì),被廣泛應用于高溫、高頻、
    的頭像 發(fā)表于 09-02 11:19 ?1987次閱讀

    V0阻燃等級氮化硼導熱絕緣

    傳遞,進行散熱。MOS管在電子電路中起到放大或者開關(guān)電路的作用,所以絕緣導熱性能材料是為MOS管散熱材料的首先考慮的參數(shù)。目前較為普遍的熱管理材料方案是使用導
    的頭像 發(fā)表于 06-18 08:09 ?776次閱讀
    V0阻燃等級<b class='flag-5'>氮化硼</b><b class='flag-5'>高</b><b class='flag-5'>導熱</b><b class='flag-5'>絕緣</b><b class='flag-5'>片</b>
    主站蜘蛛池模板: www一区二区三区 | 亚洲精品久 | 天天做天天爱天天射 | 免费一级特黄特色大片在线观看 | 在线激情网址 | 国产私拍视频 | 天堂在线最新版www中文 | 啪啪色视频| 免费jlzzjlzz在线播放视频 | 手机看片自拍自自拍日韩免费 | 在线伊人网 | 国产拳头交一区二区 | 国产超爽人人爽人人做 | 日韩精品亚洲一级在线观看 | 亚洲性久久久影院 | 永久免费看的啪啪网站 | 夜夜爽天天干 | 亚洲最新在线 | 激情五月社区 | 亚洲欧美日韩一区 | 免费被视频网站在线观看 | 狠狠色噜噜狠狠狠狠米奇7777 | 免费国产zzzwww色 | 二级黄绝大片中国免费视频 | 亚洲国产人久久久成人精品网站 | 夜夜爽爽 | 天堂在线影院 | bt天堂电影 | 老司机成人精品视频lsj | 午夜在线视频网站 | 麻豆色哟哟网站 | h在线观看免费 | 国产成人啪精品午夜在线观看 | 国产精品视频久久久久 | 激情综合色五月丁香六月亚洲 | 国产伦精品一区二区三区高清 | 免费色视频 | 免费的毛片网站 | 你懂的网址在线观看 | 国产呦精品系列在线 | 婷婷狠狠 |