作者: Aswin S Babu
設想一下,當我們困在一個陌生的沙漠中時,所面臨的艱巨任務是尋找一條安全之路。長期以來,在陌生地形中導航一直是人類和機器人共同面臨的難題。用于機器人或自動駕駛汽車的傳統導航方法需要預先準備好的地圖,但在未知地區,如果不穿越該區域,就不可能獲得這樣的地圖。這是機器人技術領域的一個典型難題,通常被稱為“雞和蛋”的問題。機器人如何在沒有地圖的情況下在未知環境中導航,又如何在沒有事先導航環境的情況下繪制地圖?
這就是同步定位和繪圖 (SLAM) 概念的用武之地。SLAM 由 Hugh Durrant-Whyte 和 John J. Leonard 等研究人員開發,是一種能讓機器人自主導航并實時繪制未知環境地圖的技術。SLAM 使機器人能夠繪制其周圍環境的地圖,同時確定自己在地圖中的位置,而不是依賴于已經存在的地圖。SLAM 的核心包括兩個主要過程:繪圖和定位。繪圖是指創建環境的空間表示,而定位則是確定機器人在地圖中的位置。這兩個過程相互交織,機器人根據傳感器數據不斷更新地圖,并相應地調整其估計的位置。
要實現 SLAM 會涉及多個關鍵步驟,每個步驟在整個過程中都起著至關重要的作用。這些步驟包括地標提取、數據關聯、狀態估計和更新。地標提取包括識別環境中可用作測繪和定位參考點的明顯特征或地標。數據關聯包括將傳感器測量值與地圖中的特征進行匹配,而狀態估計則包括根據傳感器數據估計機器人的位置和方向。最后,更新過程包括根據新的傳感器測量結果完善地圖和估計位置。
決定 SLAM 效果的關鍵因素之一是所用傳感器類型。不同傳感器提供的精度和信息水平各不相同,會影響所生成的地圖和定位估算的質量。例如,視覺 SLAM (vSLAM) 用攝像頭作為主要傳感器,允許機器人從周圍環境中提取視覺信息。這些視覺信息包括邊緣、拐角和紋理等特征,它們可用作繪制地圖和定位時的地標。此外,攝像頭還能提供豐富的語義信息,有助于完成物體檢測和識別等任務。另一方面,基于 LIDAR 的 SLAM 技術使用 LiDAR 傳感器(如 [SparkFun]的 [SLAMTEC SEN-15870])發射激光束來測量環境中物體的距離。LiDAR 傳感器具有高精度和高準確度,非常適合繪制具有復雜幾何形狀的環境。不過,LiDAR 傳感器可能價格昂貴且計算密集,可能會限制其在某些應用場景中的適用性。
根據所使用的攝像頭類型,vSLAM 分為多個子類。其中包括單目 SLAM、立體 SLAM 和 RGB-D SLAM。單目 SLAM 使用單個攝像頭來估計機器人的運動和環境結構。立體 SLAM 利用立體攝像機設置,其中包括兩個相距已知基線距離的攝像機。這種設置可以對視覺特征進行三角測量,從而提高深度估計和繪圖精度。最后,RGB-D SLAM 將傳統的 RGB 攝像頭與深度傳感器(如 Microsoft Kinect 或 [Intel] [RealSense 攝像頭])相結合。這種額外的深度信息可實現更精確的 3D 繪圖和定位。
根據成本、計算復雜性和環境條件等因素,vSLAM 的每個子類都有自己的優勢和局限性。例如,單目 SLAM 因其簡單和低成本而被廣泛使用。但是,這種技術存在尺度模糊的問題,因為它無法直接估計環境尺度。立體 SLAM 利用視覺特征的三角測量來估計深度和尺度,從而解決了這一問題。同時,RGB-D SLAM 由于結合了 RGB 圖像和深度信息,因此具有最高的精度和細節。
除了在機器人技術領域的應用,SLAM 在各行各業的實際運營中也有大量應用。在機器人學中,SLAM 使機器人能夠自主導航和探索如倉庫、工廠和災區等動態環境。在自動駕駛汽車中,SLAM 可用于創建高清晰度的道路地圖,并在這些地圖中定位車輛。SLAM 還可應用于增強現實 (AR) 和虛擬現實 (VR),通過將虛擬對象疊加到實際環境中,創造出身臨其境的體驗。
盡管 SLAM 有很多優點,但也并非沒有缺點。SLAM 的主要挑戰之一是傳感器數據處理和地圖實時更新所涉及的復雜計算。這在數據量大或計算資源有限的環境中尤其具有挑戰性。此外,SLAM 在很大程度上依賴于環境中明顯的特征和地標。在地形均勻或無特征的環境中,SLAM 可能難以創建精確的地圖或有效地定位機器人。
總之,同步定位和繪圖 (SLAM) 是一種強大的技術,可使機器人自主導航并實時繪制未知環境的地圖。通過將繪圖和定位結合到一個過程中,SLAM 使機器人能夠在沒有事先知識或已有地圖的情況下探索和了解周圍環境。雖然 SLAM 有其自身的一系列挑戰和局限性,但其應用領域廣泛多樣,橫跨機器人、自動駕駛汽車、AR 和 VR 等行業。隨著技術的不斷進步,SLAM 在塑造機器人和自動化的未來方面發揮著越來越重要的作用。
審核編輯 黃宇
-
傳感器
+關注
關注
2561文章
52385瀏覽量
762790 -
機器人
+關注
關注
212文章
29385瀏覽量
211220 -
測量
+關注
關注
10文章
5122瀏覽量
112845 -
SLAM
+關注
關注
24文章
433瀏覽量
32295
發布評論請先 登錄
評論