在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

碳化硅MOSFET器件的特性優(yōu)勢與發(fā)展瓶頸!

kus1_iawbs2016 ? 2017-12-13 09:17 ? 次閱讀

引言

碳化硅功率器件近年來越來越廣泛應(yīng)用于工業(yè)領(lǐng)域,受到大家的喜愛,不斷地推陳出新,大量的更高電壓等級、更大電流等級的產(chǎn)品相繼推出,市場反應(yīng)碳化硅元器件的效果非常好,但似乎對于碳化硅元器件的普及還有很長的路要走。那為什么SiC器件這么受歡迎,但難以普及?本文簡單概述一下碳化硅器件的特性優(yōu)勢與發(fā)展瓶頸!

碳化硅mos對比硅mos的11大優(yōu)勢

1、SiC器件的結(jié)構(gòu)和特征

Si材料中,越是高耐壓器件其單位面積的導(dǎo)通電阻就越大(通常以耐壓值的大概2-2.5次方的比例增加),因此600V以上的電壓中主要采用IGBT(絕緣柵極雙極型晶體管)。IGBT通過電導(dǎo)率調(diào)制,向漂移層內(nèi)注入作為少數(shù)載流子的空穴,因此導(dǎo)通電阻比MOSFET還要小,但是同時由于少數(shù)載流子的積聚,在關(guān)斷時會產(chǎn)生尾電流,從而造成極大的開關(guān)損耗。

SiC器件漂移層的阻抗比Si器件低,不需要進(jìn)行電導(dǎo)率調(diào)制就能夠以高頻器件結(jié)構(gòu)的MOSFET實現(xiàn)高耐壓和低阻抗。而且MOSFET原理上不產(chǎn)生尾電流,所以用SiC MOSFET替代IGBT時,能夠明顯地減少開關(guān)損耗,并且實現(xiàn)散熱部件的小型化。另外,SiC MOSFET能夠在IGBT不能工作的高頻條件下驅(qū)動,從而也可以實現(xiàn)被動器件的小型化。與600V~1200V的Si MOSFET相比,SiC MOSFET的優(yōu)勢在于芯片面積小(可以實現(xiàn)小型封裝),而且體二極管的恢復(fù)損耗非常小。

2、SiC Mosfet的導(dǎo)通電阻

SiC 的絕緣擊穿場強(qiáng)是Si 的10倍,所以能夠以低阻抗、薄厚度的漂移層實現(xiàn)高耐壓。因此,在相同的耐壓值的情況下,SiC 可以得到標(biāo)準(zhǔn)化導(dǎo)通電阻(單位面積導(dǎo)通電阻)更低的器件。例如900V時,SiC‐MOSFET 的芯片尺寸只需要Si‐MOSFET 的35分之1、SJ‐MOSFET 的10分之1,就可以實現(xiàn)相同的導(dǎo)通電阻。不僅能夠以小封裝實現(xiàn)低導(dǎo)通電阻,而且能夠使門極電荷量Qg、結(jié)電容也變小。目前SiC 器件能夠以很低的導(dǎo)通電阻輕松實現(xiàn)1700V以上的耐壓。因此,沒有必要再采用IGBT這種雙極型器件結(jié)構(gòu)(導(dǎo)通電阻變低,則開關(guān)速度變慢) ,就可以實現(xiàn)低導(dǎo)通電阻、高耐壓、快速開關(guān)等各優(yōu)點(diǎn)兼?zhèn)涞钠骷?/p>

3、Vd-Id特性

SiC‐MOSFET 與IGBT 不同,不存在開啟電壓,所以從小電流到大電流的寬電流范圍內(nèi)都能夠?qū)崿F(xiàn)低導(dǎo)通損耗。而Si MOSFET 在150℃時導(dǎo)通電阻上升為室溫條件下的2 倍以上,與Si MOSFET 不同,SiC MOSFET的上升率比較低,因此易于熱設(shè)計,且高溫下的導(dǎo)通電阻也很低。

4、驅(qū)動門極電壓和導(dǎo)通電阻

SiC‐MOSFET 的漂移層阻抗比Si MOSFET 低,但是另一方面,按照現(xiàn)在的技術(shù)水平,SiC MOSFET的MOS 溝道部分的遷移率比較低,所以溝道部的阻抗比Si 器件要高。因此,越高的門極電壓,可以得到越低的導(dǎo)通電阻(Vgs=20V 以上則逐漸飽和)。如果使用一般IGBT 和Si MOSFET 使用的驅(qū)動電壓Vgs=10~15V 的話,不能發(fā)揮出SiC 本來的低導(dǎo)通電阻的性能,所以為了得到充分的低導(dǎo)通電阻,推薦使用Vgs=18V左右進(jìn)行驅(qū)動。Vgs=13V 以下的話,有可能發(fā)生熱失控,請注意不要使用。

5、Vg-Id特性

SiC MOSFET 的閾值電壓在數(shù)mA 的情況下定義的話,與Si‐MOSFET 相當(dāng),室溫下大約3V(常閉)。但是,如果流通幾個安培電流的話,需要的門極電壓在室溫下約為8V 以上,所以可以認(rèn)為針對誤觸發(fā)的耐性與IGBT 相當(dāng)。溫度越高,閾值電壓越低。

6、Turn-On特性

SiC‐MOSFET 的Turn‐on 速度與Si IGBT 和Si MOSFET 相當(dāng),大約幾十ns。但是在感性負(fù)載開關(guān)的情況下,由通往上臂二極管的回流產(chǎn)生的恢復(fù)電流也流過下臂,由于各二極管性能的偏差,從而產(chǎn)生很大的損耗。Si FRD 和Si MOSFET 中的體二極管的通常恢復(fù)電流非常大,會產(chǎn)生很大的損耗,而且在高溫下該損耗有進(jìn)一步增大的趨勢。與此相反,SiC二極管不受溫度影響,可以快速恢復(fù),SiC MOSFET 的體二極管雖然Vf 較高但是與碳化硅二極管相同,具有相當(dāng)?shù)目焖倩謴?fù)性能。通過這些快速恢復(fù)性能,可以減少Turn‐on 損耗(Eon)好幾成。開關(guān)速度極大程度上決定于外部的門極電阻Rg。為了實現(xiàn)快速動作,推薦使用幾Ω左右的低阻值門極電阻。另外還需要考慮到浪涌電壓,選擇合適的門極電阻。

7、Turn-Off特性

SiC MOSFET 的最大特點(diǎn)是原理上不會產(chǎn)生如IGBT中經(jīng)常見到的尾電流。SiC 即使在1200V 以上的耐壓值時也可以采用快速的MOSFET 結(jié)構(gòu),所以,與IGBT 相比,Turn‐off 損耗(Eoff)可以減少約90%,有利于電路的節(jié)能和散熱設(shè)備的簡化、小型化。而且,IGBT 的尾電流會隨著溫度的升高而增大,而SiC‐MOSFET 幾乎不受溫度的影響。另外,由于較大的開關(guān)損耗引起的發(fā)熱會致使結(jié)點(diǎn)溫度(Tj)超過額定值,所以IGBT 通常不能在20KHz 以上的高頻區(qū)域內(nèi)使用,但SiC MOSFET 由于Eoff 很小,所以可以進(jìn)行50KHz 以上的高頻開關(guān)動作。通過高頻化,可以使濾波器等被動器件小型化。

8、內(nèi)部門極電阻

芯片內(nèi)部門極電阻與門極電極材料的薄層阻抗和芯片尺寸相關(guān)。如果是相同的設(shè)計,芯片內(nèi)部門極電阻與芯片尺寸呈反比例,芯片尺寸越小,門極電阻越大。SiC MOSFET 的芯片尺寸比Si 器件小,雖然結(jié)電容更小,但是同時門極電阻也就更大。

9、門極驅(qū)動電路

SiC MOSFET 是一種易于驅(qū)動、驅(qū)動功率較少的常閉型、電壓驅(qū)動型的開關(guān)器件。基本的驅(qū)動方法和IGBT 以及Si MOSFET一樣。推薦的驅(qū)動門極電壓,ON 側(cè)時為+18V 左右,OFF 側(cè)時為0V。在要求高抗干擾性和快速開關(guān)的情況下,也可以施加‐3~‐5V 左右的負(fù)電壓。當(dāng)驅(qū)動大電流器件和功率模塊時,推薦采用緩沖電路。

10、體二極管的 Vf 和逆向?qū)?/h4>

與Si MOSFET 一樣,SiC MOSFET體內(nèi)也存在因PN結(jié)而形成的體二極管(寄生二極管)。但是由于SiC的帶隙是Si的3倍,所以SiC MOSFET的PN二極管的開啟電壓大概是3V左右,比較大,而且正向壓降(Vf)也比較高。以往,當(dāng)Si MOSFET外置回流用的快速二極管時,由于體二極管和外置二極管的Vf大小相等,為了防止朝向恢復(fù)慢的體二極管側(cè)回流,必須在MOSFET上串聯(lián)低電壓阻斷二極管,這樣的話,既增加了器件數(shù)量,也使導(dǎo)通損耗進(jìn)一步惡化。然而,SiC MOSFET的體二極管的Vf 比回流用的快速二極管的Vf還要高出很多,所以當(dāng)逆向并聯(lián)外置二極管時,不需要串聯(lián)低壓阻斷二極管。

體二極管的Vf比較高,這一問題可以通過如同整流一樣向門極輸入導(dǎo)通信號使其逆向?qū)▉斫档汀D孀凃?qū)動時,回流側(cè)的臂上多數(shù)是在死區(qū)時間結(jié)束之后輸入門極導(dǎo)通信號(請確認(rèn)使用中的CPU的動作),體二極管的通電只在死區(qū)時間期間發(fā)生,之后基本上是經(jīng)由溝道逆向流過。因此,即使在只由MOSFET(無逆向并聯(lián)的SBD)構(gòu)成的橋式電路中,體二極管的Vf較高也沒有問題。

11、體二極管的恢復(fù)特性

SiC MOSFET的體二極管雖然是PN 二極管,但是少數(shù)載流子壽命較短,所以基本上沒有出現(xiàn)少數(shù)載流子的積聚效果,與SBD 一樣具有超快速恢復(fù)性能(幾十ns)。因此Si MOSFET的體二極管與IGBT外置的FRD相比,其恢復(fù)損耗可以減少到IGBT外置的FRD的幾分之一到幾十分之一。體二極管的恢復(fù)時間與SBD相同,是恒定的,不受正向輸入電流If的影響(dI/dt 恒定的情況下)。在逆變器應(yīng)用中,即使只由MOSFET 構(gòu)成橋式電路,也能夠?qū)崿F(xiàn)非常小的恢復(fù)損耗,同時還預(yù)期可以減少因恢復(fù)電流而產(chǎn)生的噪音,達(dá)到降噪。

從以上這些方面就能看出SiC MOSFET相對于Si IGBT和MOSFET的優(yōu)勢所在。

碳化硅mos的發(fā)展瓶頸

綜合各種報道,難題不在芯片的原理設(shè)計,特別是芯片結(jié)構(gòu)設(shè)計解決好并不難。難在實現(xiàn)芯片結(jié)構(gòu)的制作工藝。當(dāng)然對于用戶最直接的原因是,SiC MOSFET 的價格相當(dāng)昂貴,限制了它的普及。

舉例如下:

1、碳化硅晶片的微管缺陷密度。微管是一種肉眼都可以看得見的宏觀缺陷,在碳化硅晶體生長技術(shù)發(fā)展到能徹底消除微管缺陷之前,大功率電力電子器件就難以用碳化硅來制造。盡管優(yōu)質(zhì)晶片的微管密度已達(dá)到不超過15cm-2 的水平。但器件制造要求直徑超過100mm的碳化硅晶體,微管密度低于0.5cm-2 。

2、外延工藝效率低。碳化硅的氣相同質(zhì)外延一般要在1500℃以上的高溫下進(jìn)行。由于有升華的問題,溫度不能太高,一般不能超過1800℃,因而生長速率較低。液相外延溫度較低、速率較高,但產(chǎn)量較低。

3、摻雜工藝有特殊要求。如用擴(kuò)散方法進(jìn)行慘雜,碳化硅擴(kuò)散溫度遠(yuǎn)高于硅,此時掩蔽用的SiO2層已失去了掩蔽作用,而且碳化硅本身在這樣的高溫下也不穩(wěn)定,因此不宜采用擴(kuò)散法摻雜,而要用離子注入摻雜。如果p型離子注入的雜質(zhì)使用鋁。由于鋁原子比碳原子大得多,注入對晶格的損傷和雜質(zhì)處于未激活狀態(tài)的情況都比較嚴(yán)重,往往要在相當(dāng)高的襯底溫度下進(jìn)行,并在更高的溫度下退火。這樣就帶來了晶片表面碳化硅分解、硅原子升華的問題。目前,p型離子注入的問題還比較多,從雜質(zhì)選擇到退火溫度的一系列工藝參數(shù)都還需要優(yōu)化。

4、歐姆接觸的制作。歐姆接觸是器件電極引出十分重要的一項工藝。在碳化硅晶片上制造金屬電極,要求接觸電阻低于10- 5Ωcm2,電極材料用Ni和Al可以達(dá)到,但在100℃ 以上時熱穩(wěn)定性較差。采用Al/Ni/W/Au復(fù)合電極可以把熱穩(wěn)定性提高到600℃、100h ,不過其接觸比電阻高達(dá)10- 3Ωcm2 。所以要形成好的碳化硅的歐姆接觸比較難。

5、配套材料的耐溫。碳化硅芯片可在600℃溫度下工作,但與其配套的材料就不見得能耐此高溫。例如,電極材料、焊料、外殼、絕緣材料等都限制了工作溫度的提高。

以上僅舉數(shù)例,不是全部。還有很多工藝問題還沒有理想的解決辦法,如碳化硅半導(dǎo)體表面挖槽工藝、終端鈍化工藝、柵氧層的界面態(tài)對碳化硅MOSFET器件的長期穩(wěn)定性影響方面,行業(yè)中還有沒有達(dá)成一致的結(jié)論等,大大阻礙了碳化硅功率器件的快速發(fā)展。

結(jié)語

借鑒各類科技發(fā)展經(jīng)驗,凡事都有一個自己的發(fā)展規(guī)律。例如晶閘管上世記五十年代在我國出現(xiàn),用于電氣控制,受到各行各業(yè)歡迎,但并不一帆風(fēng)順。先是可控硅熱,后因設(shè)計原理沒有徹底搞清,產(chǎn)品故障頻發(fā),社會出現(xiàn)了“可怕硅”的恐懼。經(jīng)過努力,下定決心克服難題,迎來了晶閘管的普及使用。所以,碳化硅功率器件的發(fā)展也不可能出現(xiàn)短期的飛躍要有個過程。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • MOSFET
    +關(guān)注

    關(guān)注

    148

    文章

    7813

    瀏覽量

    217213
  • 碳化硅
    +關(guān)注

    關(guān)注

    25

    文章

    2962

    瀏覽量

    49873

原文標(biāo)題:碳化硅MOSFET性能的優(yōu)勢與發(fā)展遇到的瓶頸!

文章出處:【微信號:iawbs2016,微信公眾號:寬禁帶半導(dǎo)體技術(shù)創(chuàng)新聯(lián)盟】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    碳化硅功率器件的種類和優(yōu)勢

    在現(xiàn)代電子技術(shù)飛速發(fā)展的背景下,功率器件的性能和效率面臨著越來越高的要求。碳化硅(SiC)作為一種新興的寬禁帶半導(dǎo)體材料,憑借其優(yōu)異的電氣特性和熱性能,逐漸成為功率電子
    的頭像 發(fā)表于 04-09 18:02 ?422次閱讀

    碳化硅MOSFET優(yōu)勢有哪些

    碳化硅MOSFET不僅具有低導(dǎo)通電阻、高開關(guān)速度和高耐壓等顯著優(yōu)勢,還在高溫和高頻應(yīng)用中展現(xiàn)出優(yōu)越的穩(wěn)定性。本文將詳細(xì)探討碳化硅MOSFET
    的頭像 發(fā)表于 02-26 11:03 ?480次閱讀

    碳化硅功率器件特性和應(yīng)用

    )功率器件,成為電力電子領(lǐng)域的核心技術(shù)之一。本文將詳細(xì)介紹碳化硅功率器件的基本特性、主要類型、應(yīng)用領(lǐng)域、市場前景以及未來發(fā)展趨勢。
    的頭像 發(fā)表于 02-25 13:50 ?464次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的<b class='flag-5'>特性</b>和應(yīng)用

    碳化硅在半導(dǎo)體中的作用

    碳化硅(SiC)在半導(dǎo)體中扮演著至關(guān)重要的角色,其獨(dú)特的物理和化學(xué)特性使其成為制作高性能半導(dǎo)體器件的理想材料。以下是碳化硅在半導(dǎo)體中的主要作用及優(yōu)勢
    的頭像 發(fā)表于 01-23 17:09 ?821次閱讀

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    隨著電力電子技術(shù)的不斷進(jìn)步,碳化硅MOSFET因其高效的開關(guān)特性和低導(dǎo)通損耗而備受青睞,成為高功率、高頻應(yīng)用中的首選。作為碳化硅MOSFET
    發(fā)表于 01-04 12:37

    碳化硅MOSFET柵極氧化層缺陷的檢測技術(shù)

    碳化硅材料在功率器件中的優(yōu)勢碳化硅(SiC)作為第三代化合物半導(dǎo)體材料,相較于傳統(tǒng)硅基器件,展現(xiàn)出了卓越的性能。SiC具有高禁帶寬度、高熱導(dǎo)
    的頭像 發(fā)表于 12-06 17:25 ?1120次閱讀
    <b class='flag-5'>碳化硅</b><b class='flag-5'>MOSFET</b>柵極氧化層缺陷的檢測技術(shù)

    碳化硅的應(yīng)用領(lǐng)域 碳化硅材料的特性優(yōu)勢

    碳化硅的應(yīng)用領(lǐng)域 碳化硅(SiC),作為一種寬禁帶半導(dǎo)體材料,因其獨(dú)特的物理和化學(xué)特性,在多個領(lǐng)域展現(xiàn)出廣泛的應(yīng)用潛力。以下是碳化硅的一些主要應(yīng)用領(lǐng)域: 電子
    的頭像 發(fā)表于 11-29 09:27 ?4132次閱讀

    碳化硅功率器件的工作原理和應(yīng)用

    碳化硅(SiC)功率器件近年來在電力電子領(lǐng)域取得了顯著的關(guān)注和發(fā)展。相比傳統(tǒng)的硅(Si)基功率器件碳化硅具有許多獨(dú)特的優(yōu)點(diǎn),使其在高效能、
    的頭像 發(fā)表于 09-13 11:00 ?1012次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的工作原理和應(yīng)用

    碳化硅功率器件優(yōu)勢和應(yīng)用領(lǐng)域

    在電力電子領(lǐng)域,碳化硅(SiC)功率器件正以其獨(dú)特的性能和優(yōu)勢,逐步成為行業(yè)的新寵。碳化硅作為一種寬禁帶半導(dǎo)體材料,具有高擊穿電場、高熱導(dǎo)率、低介電常數(shù)等特點(diǎn),使得
    的頭像 發(fā)表于 09-13 10:56 ?1189次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的<b class='flag-5'>優(yōu)勢</b>和應(yīng)用領(lǐng)域

    碳化硅功率器件的原理簡述

    隨著科技的飛速發(fā)展,電力電子領(lǐng)域也迎來了前所未有的變革。在這場變革中,碳化硅(SiC)功率器件憑借其獨(dú)特的性能優(yōu)勢,逐漸成為業(yè)界關(guān)注的焦點(diǎn)。本文將深入探討
    的頭像 發(fā)表于 09-11 10:47 ?1023次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的原理簡述

    碳化硅功率器件的優(yōu)點(diǎn)和應(yīng)用

    碳化硅(SiliconCarbide,簡稱SiC)功率器件是近年來電力電子領(lǐng)域的一項革命性技術(shù)。與傳統(tǒng)的硅基功率器件相比,碳化硅功率器件在性
    的頭像 發(fā)表于 09-11 10:44 ?873次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的優(yōu)點(diǎn)和應(yīng)用

    碳化硅功率器件的技術(shù)優(yōu)勢

    隨著電力電子技術(shù)的飛速發(fā)展,傳統(tǒng)的硅基功率器件因其物理特性的限制,已經(jīng)逐漸難以滿足日益增長的高性能、高效率、高可靠性的應(yīng)用需求。在這一背景下,碳化硅(SiC)功率
    的頭像 發(fā)表于 09-11 10:43 ?511次閱讀

    碳化硅功率器件有哪些優(yōu)勢

    碳化硅(SiC)功率器件是一種基于碳化硅半導(dǎo)體材料的電力電子器件,近年來在功率電子領(lǐng)域迅速嶄露頭角。與傳統(tǒng)的硅(Si)功率器件相比,
    的頭像 發(fā)表于 09-11 10:25 ?951次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>有哪些<b class='flag-5'>優(yōu)勢</b>

    碳化硅功率器件優(yōu)勢和分類

    碳化硅(SiC)功率器件是利用碳化硅材料制造的半導(dǎo)體器件,主要用于高頻、高溫、高壓和高功率的電子應(yīng)用。相比傳統(tǒng)的硅(Si)基功率器件
    的頭像 發(fā)表于 08-07 16:22 ?1022次閱讀
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的<b class='flag-5'>優(yōu)勢</b>和分類

    碳化硅功率器件:高效能源轉(zhuǎn)換的未來

    碳化硅功率器件是一類基于碳化硅材料制造的半導(dǎo)體器件,常見的碳化硅功率器件包括
    的頭像 發(fā)表于 04-29 12:30 ?687次閱讀
    主站蜘蛛池模板: 亚洲高清美女一区二区三区 | 日韩免费三级 | 国产精品久久久久久久久ktv | 日本最猛黑人xxxx猛交 | 久久国产三级 | 亚洲大胆精品337p色 | 日本xxxx色视频在线观看免 | a天堂资源在线观看 | 国产成人精品影视 | 中文字幕第页 | 免费国内精品久久久久影院 | 国产小视频免费 | 最刺激黄a大片免费观看下截 | 狠狠狠狼鲁欧美综合网免费 | 国产小毛片 | 菲菲国产在线观看 | 亚洲男人的天堂久久无 | 国产精品一区牛牛影视 | 婷婷久久综合九色综合98 | 亚洲无线视频 | 91啪免费网站在线观看 | 一区二区三区网站在线免费线观看 | 天天干天天舔天天操 | 国产伦一区二区三区免费 | 日本一区二区三区在线 视频观看免费 | 久久婷婷色| www.五月激情 | 四虎最新紧急更新地址 | 欧美tube6最新69 | 奇米影视777四色米奇影院 | 午夜免费福利影院 | 国内真实下药迷j在线观看 国内自拍 亚洲系列 欧美系列 | 全国最大色成免费网站 | 欧美日韩在线成人看片a | xxxx欧美| 久久婷婷国产综合精品 | 四虎永久精品免费网址大全 | 黄色大片播放 | 久久成人影视 | 热re99久久精品国99热 | 四虎影城 |