AI芯片也被稱為AI加速器或計算卡,即專門用于處理人工智能應用中的大量計算任務的模塊(其他非計算任務仍由CPU負責)。當前,AI芯片主要分為 GPU 、FPGA 、ASIC 。
人工智能大勢之下,芯片市場的蛋糕越做越大。有分析認為,到2020年AI芯片市場規模將達到146.16億美元,約占全球人工智能市場規模12.18%。
本期的智能內參,我們推薦來自天風證券的AI芯片市場報告,結合市場觀察,從市場和流派出發盤點AI芯片的發展現狀,分析四大藍海的未來格局。
以下為智能內參整理呈現的干貨:
一、AI "腦力" 之源
▲深度學習在神經網絡模型的應用中主要分為上游訓練端和下游推理端
互聯網大數據的興起對超算芯片提出了新的需求,人工智能(AI)亦如是。AI的“腦力”核心在于芯片和算法。
其中,AI算法的目前的主流方案是深度學習/強化學習,并已經被AlphaGo Master 和Zero成功驗證可行性。深度學習即通過構建一種深層非線性網絡結構,來實現復雜函數逼近及自動特征提取,具有強大的從少數樣本集中挖掘數據統計規律的能力。
▲典型AI芯片商一覽
另一方面,芯片,則為復雜的計算任務提供支撐(隨著模型的逐漸復雜化,浮點運算的數量也呈指數級增長至 ExaFLOPS)。
2015 年微軟ResNet 含有 6000 萬個參數,運算量為 7 ExaFLOPS(百億億次浮點運算)。2016 年百度語音識別系統 Deep Speech 2 的參數量上升到 3 億個,運算量提升至 20 ExaFLOPS。而今年Google 的 NMT 神經網絡機器翻譯系統,參數量達 87 億個,需要 105 ExaFLOPS 的運算量。
因此,本質上,是摩爾定律的突破和并行計算以及云計算的發展,讓人工智能開始得以普及。沒有 GPU,人們就無法快速的處理海量數據,而數據訓練的匱乏,會讓深度學習的效率還不如人類工程算法(human engineering algorithm)。
二、GPU稱雄ASIC割據
▲四大芯片的 “通用性和功耗的平衡”
▲目前深度學習領域常用的四大芯片類型
2011年,吳恩達率先將GPU用于谷歌大腦,發現12顆GPU可提供約2000顆CPU的深度學習性能,之后紐約大學、多倫多大學及瑞士人工智能實驗室紛紛在GPU上加速其深度神經網絡。
可以說,在過去的幾年,尤其是2015年以來,人工智能大爆發就是由于英偉達公司的GPU得到廣泛應用,使得并行計算變得更快、更便宜、更有效。
▲GPU和CPU結構上的區別
GPU比CPU擁有更多的運算器(Arithmetic Logical Unit),只需要進行高速運算而不需要邏輯判斷,其海量數據并行運算的能力與深度學習需求不謀而合。因此,在深度學習上游訓練端(主要用在云計算數據中心里),GPU 是當仁不讓的第一選擇。目前GPU的市場格局以英偉達為主(超過70%),AMD 為輔,預計 3-5 年內 GPU 仍然是深度學習市場的第一選擇。
下游推理端更接近終端應用,更關注響應時間而不是吞吐率,需求更加細分,除了主流的GPU芯片之外,還包括CPU、FPGA( Xilinx、英特爾Altera、Lattice 及 Microsemi等)、ASIC (英特爾Nervana Engine、Wave Computing 的數據流處理單元、英偉達的DLA、谷歌 TPU、寒武紀 NPU等)也會在這個領域發揮各自的優勢特點。
▲FPGA:現場可編程門陣列
目前來看,下游推理端雖可容納 CPU、FPGA、ASIC 等芯片,競爭態勢中英偉達依然占大頭,但隨著AI的發展,FPGA的低延遲、低功耗、可編程性(適用于傳感器數據預處理工作以及小型開發試錯升級迭代階段)和ASIC的特定優化和效能優勢(適用于在確定性執行模型)將凸顯出來。
▲賽靈思提供的 FPGA 與 CPU 性能對比優勢
Grand View Research 分析,2015年全球FPGA總市場規模達 63.6 億美元,預計到2024年FPGA市場規模將達到142億美元。
其中,Xilinx 的市場份額為 49%,主要應用到工業和通訊領域,但近年亦致力于在云計算數據中心的服務器以及無人駕駛的應用;Altera(已被英特爾收購)的市場份額約為 40%,定位跟 Xilinx 類似;萊迪斯半導體(Lattice Semiconductor)的市場份額約為 6%,主要市場為消費電子產品和移動傳輸,以降低耗電量、縮小體積及縮減成本為主;Microsemi (Actel)的市場份額約為 4%,瞄準通信、國防與安全、航天與工業等市場。目前 Altera 的 FPGA 產品被用于微軟 Azure 云服務中包括必應搜索、機器翻譯等應用中。
各家芯片商打法上,除了力推自家芯片,還會在整個AI生態上進行布局:
▲英偉達人工智能布局平臺
英偉達擁有目前最為成熟的開發生態環境(CUDA 因統一而完整的開發套件,豐富的庫以及對英偉達 GPU 的原生支持而成為開發主流,目前已開發至第 9 代,開發者人數超過 51萬);
▲皮查伊在 2016 I/O 大會上介紹 TensorFlow
Google 的 TPU 也結合 TensorFlow 開源開發環境,并公布了 TensorFlow Research Cloud 云開發平臺;
▲AMD GPU規劃路進
AMD 通過CPU(EPYC)+GPU(Vega)+ROCm的開源生態,打造GPU計算最通用開源平臺,并合作谷歌云進軍云計算打開高端市場,合作THATIC(天津海光先進技術投資有限公司,是中科曙光的控股子公司)打開國內數據中心CPU服務器市場。
開源時代生態為天,硬件廠商以開源之態,本質上是搶奪業界事實標準的控制權,但隨之而來的也是整個芯片行業設計門檻和研發成本的不斷降低。
三、四大場景的芯片賽道數據中心藍海正當時
▲當前英偉達GPU在數據中心的使用情況
在數據中心搶灘戰中,英偉達可謂拔得頭籌:2016年公司數據中心業務帶來8.3 億美元收入,同比增長145%;今年的增長的動力落在了Volta架構V100(訓練吞吐量提高至上代Pascal的12倍)的身上,前9個月收入已達 13.26 億美元,同比增長148%。
▲英偉達基本壟斷數據中心GPU
從市場占有率來看,目前全球云計算巨頭基本使用英偉達GPU進行深度學習與算法加速,且相對于AMD,英偉達先發的構架升級以及廣泛成熟的開發生態環境優勢明顯。不過,AMD或將接著合作百度、中科曙光的機會依靠GPU的捆綁銷售,加速切入國內數據中心和AI發展快車道。
▲英特爾計劃在數據中心里提供 FPGA 加速
值得注意的是,自2015年6月167億美元收購FPGA芯片廠Altera后,英特爾也宣布計劃在數據中心里提供 FPGA 加速;與此同時,TensorFlow團隊公布了 TensorFlow Research Cloud 云開發平臺,向研究人員提供一個具有 1000 個云TPU 的服務器集群,用來服務各種計算密集的研究項目,第二代TPU也可用于深度學習上游訓練環節,并將部署在谷歌云計算引擎平臺上,真正帶入云端。
▲TPU Pod,由64臺二代TPU 組成,算力達 11.5 petaflops
從市場容量/前景來看,云計算數據中心成為不可逆轉的趨勢,超級數據中心也越來越依賴GPU來更快地處理高要求的工作負載。目前,全球服務器中GPU的滲透率僅有 0.24%并基本被英偉達壟斷,天風證券預計英偉達數據中心業務在2020年前將達40億美元,對應全球服務器GPU 滲透率也將達 4 倍以上增長。
▲全球服務器 GPU 市場估計
自動駕駛開啟黃金十年
▲全球自動駕駛 L1-L5 滲透率預測
天風證券認為,以 2020 年為界,全球將開啟無人駕駛“黃金十年”。L3 半自動駕駛水平以上的行業發展,需要整個汽車行業供應商關系的重組和整合。包括:
▲“車企+ 供應商+ 芯片巨頭+ 打車軟件+ 物流公司”新格局
1、形成“車企+供應商+芯片巨頭+打車軟件+物流公司”的格局;
2、共享經濟下的租車、打車以及商業貨運物流領域會最快落地得到應用;
3、L4 相對比 L1、L2,單車系統零部件支出會增長 470%,從 545 美元升至 3100 美元/車。
▲L1 到 L4 單車零部件成本變化
英偉達指出,從 ADAS 提升到 L3 半自動駕駛所需的計算難度會提升 5 倍,而關鍵的L3向L4提升需要 50 倍,從 L4 提升到 L5 則需要 2 倍。因此,汽車電子化和智能化的方向將持續提高科技類公司在汽車產業鏈內的重要程度(三星收購哈曼,高通收購 NXP,英特爾收購Mobileye),營造了“車企+ 供應商+ 芯片巨頭+ 打車軟件+ 物流公司”的新格局。
目前,無人駕駛上游系統解決方案逐漸形成英偉達與英特爾-Mobileye 聯盟兩大競爭者。
▲英偉達Drive PX車載計算平臺情況
▲英偉達三代自動駕駛平臺性能比較
英偉達在硬件層面算力和研發節奏上成為當仁不讓的先行軍:此前,公司的汽車業務主要集中在汽車顯示屏和影音系統(Drive PX),今年1月的 CES 大會上發布無人駕駛的整體布局(從車載超級電腦平臺以及人工智能駕駛系統, Xavier),10 月英偉達在德國慕尼黑的 GTC Europe 大會上,發布了面向完全自動駕駛 L5 級別的新一代 Drive PX 人工智能車載計算平臺 Pegasus。英偉達智能汽車合作方有大眾(優化城市交通)、奧迪(聯合Mobileye、Delphi 等設計的全球首款搭載 L3 級自動駕駛的量產車,新一代A8)等。
▲英特爾給出的市場空間指引:汽車電子化和智能化整個市場空間,包括廣告系統、數據和服務將從2020年的200億美元提升到2030年的700億美元。
▲EyeQ系列芯片參數介紹
英偉達的競爭對手,也就是被英特爾以每股 63.54 美元價格收購的 Mobileye。天風證券指出,Mobileye的機器視覺算法將與英特爾的芯片、數據中心、AI、傳感器融合,以及地圖服務等方面產生強大的協同合作效應,聯手打造“軟硬兼施”的全新無人駕駛供應商。目前,英特爾-Mobileye聯盟擁有全行業最廣泛的車企合作關系,且商業路徑十分明晰:從 ADAS 出發,逐步完善功能模塊,提高自動化程度,進化到EyeQ5(預計2020年推出,算力15萬億次)將會成為一個開源性、定制化、可升級的標準解決方案,打造成為無人駕駛界的Android。
除了上述兩大主力汽車芯片競爭方,百度雖然與英偉達合作密切(Apollo開放平臺從數據中心到自動駕駛都將使用英偉達技術,包括Tesla GPU和DRIVE PX 2,以及CUDA和TensorRT在內的英偉達軟件),卻也采用Xilinx的FPGA芯片加速機器學習,用于語音識別和汽車自動駕駛。
虛擬貨幣小蛋糕
▲GPU 礦機盈利估計
2017 年以來,數字虛擬貨幣連創新高,以太坊(Ethereum)技術下的以太幣(ETH)漲逾30倍,比特幣(BTC)也漲逾 7 倍突破 8000 美元。全球數字貨幣市值也從 180 億美元增長至逾 2300億美元。受益于數字貨幣的持續高度關注,通過顯卡“挖礦”而獲取貨幣的熱潮,也發掘了對 AMD 和英偉達顯卡的需求。
根據 cryptocompare 網站數據,AMD RX 470 GPU的礦機有明顯優于英偉達 GTX 970 GPU 的經濟回報,為了有效消弭挖礦和游戲需求沖突,并避免二手卡問題,英偉達針對虛擬數字貨幣挖礦熱潮推出專門挖礦顯卡(基于 GTX 1060 6GB 產品,完全取消顯示輸出接口,僅提供 90 天的質保);AMD 則發布了專門的挖礦驅動 Radeon Software Crimson ReLive Edition Beta for BlockchainCompute,為區塊鏈計算工作負荷優化性能。
英偉達 CEO Jensen 在 Q3 季報會議上屢次被問及數字貨幣挖礦對公司業務的影響,他5次強調:挖礦市場對英偉達長期來說將會是“微小但不是零的”。數字貨幣挖礦對 GPU 巨頭的影響整體空間有限,目前挖礦對顯卡需求的驅動雖會持續存在但將進一步趨平。這主要是因為:
1、遵循比特幣挖礦路徑,挖礦需求會向專門芯片礦機轉移;
2、以太幣正在進行“工作量證明”向“權益證明”的升級,算力需求將會下降;
3、挖礦市場的狂熱需求也會影響正常游戲顯卡市場的需求并帶來二手卡問題,也不是英偉達和 AMD 所想見。
終端AI的抬頭
AI 芯片的計算場景可分為云端AI 和終端 AI。NVIDIA首席科學家William Dally將深度學習的計算場景分為三類,分別是數據中心的訓練、數據中心的推斷和嵌入式設備的推斷。前兩者可以總結為云端的應用,后者可以概括為終端的應用。
終端設備的模型推斷方面,由于低功耗、便攜等要求,FPGA和ASIC的機會優于GPU 。而提到終端智能,不得不談蘋果的A11神經引擎和華為的麒麟970 NPU。
▲蘋果A11搭載神經處理引擎,采用雙核設計,每秒運算次數最高可達 6000 億次
2017年9月,蘋果發布了iPhone X,搭載64位架構A11神經處理引擎。為實現基于深度學習的高準確性面部識別解鎖方式(Face ID),并解決云接口(Cloud-Based API)帶來的延時和隱私問題,以及龐大的訓練數據和計算量與終端硬件限制的矛盾,iPhone X采用了“師生”培訓、中間層、聯合圖、分割GPU工作項、匹配框架的神經引擎等方案解決(詳細方案參見第206期智能內參)。
▲華為海思麒麟 970 架構搭載寒武紀IP的NPU
另一個吃螃蟹的企業就是咱們的華為——麒麟 970。麒麟 970 采用 10nm 制程,搭載 Cortex-A73(CPU)、Mali-G72(GPU)和麒麟 NPU(神經網絡處理單元)。其中,麒麟 NPU 采用了寒武紀的IP(1A芯片),目的是解決端側AI(On-Device AI)。
▲寒武紀產品研發發展
寒武紀作為背靠中科院計算所和中科曙光的 AI 芯片獨家首公司,既具有開發實力,又能夠與中科曙光進行產業鏈互補,先后獲得中科院1000萬元專項資金支持和1億美元的A輪融資,目前估值已接近 10 億美元。
▲寒武紀 DianNao 系列主要產品與性能
寒武紀自下而上的策略,從提供低功耗嵌入式終端的本地智能處理芯片解決方案入手,計劃逐步向服務器云端的訓練處理芯片去布局,有望構建強大的用戶生態圈。目前寒武紀主要有三條產品線:
1、IP 授權:智能 IP 指令集可授權集成到手機、安防、可穿戴設備等終端芯片中,2016 年全年拿到 1 億元訂單;
2、在智能云服務器芯片領域:作為 PCIe 加速卡插在云服務器上,希望能布局進入人工智能訓練和推理市場;
3、開發面向家用智能服務機器人、智能駕駛、智能安防等領域的應用芯片。
筆者認為,AI芯片,或者說AI加速器目前有三個明確的技術路徑,更為通用的GPU(既能作為圖形處理器引爆游戲業務,又能滲透數據中心橫掃訓練端)、更可編程的FPGA(適用于迭代升級,各類場景化應用前景超大),以及更專業的ASIC(叩開終端AI的大門)。
其中,英偉達、英特爾兩大傳統芯片巨頭在三大路徑,特別是通用芯片和半定制芯片都有布局,掌握強大的先發優勢,在數據中心、汽車等重要藍海布局扎實;AMD和Xilinx則各自找盟友,特別是中國盟友,求突圍;ASIC方面,谷歌從TPU出發開源生態進行布局,且二代TPU展露了訓練端芯片市場的野心,寒武紀則坐擁國內半導體、芯片、智能終端等行業之勢,且ASIC定制化的特點有效規避了傳統巨頭的壟斷局面,有著可靠健康的發展路線。
-
人工智能
+關注
關注
1797文章
47928瀏覽量
240985 -
AI芯片
+關注
關注
17文章
1918瀏覽量
35285
原文標題:AI芯片:一塊價值146億美元的蛋糕!
文章出處:【微信號:iawbs2016,微信公眾號:寬禁帶半導體技術創新聯盟】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
Groq獲沙特15億美元投資,加速AI芯片全球布局
AI服務器市場前景廣闊:2025年市場價值預計達2980億美元
NVIDIA Blackwell 將掌控 AI 下一章,第四季度將出貨價值數十億美元的芯片

評論