在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

開關電源中的功率因數校正電路詳解

張飛電子實戰營 ? 來源:電路一點通 ? 2025-03-06 10:18 ? 次閱讀

本文今天要講的PFC,是指開關電源中功率因數校正電路。

在電力供應中,世界各國都在致力于達到高品質的電網參數指標。然而,大量的興建電廠,并非解決問題的唯一途徑。一方面提高電力供給的能量,一方面提高電氣產品功率因數(Power factor)或效率,才能有效解決問題。

很多電氣產品,因其內部阻抗的特性,使得其功率因數非常低,為提高電氣產品的功率因數, 必須在電源輸入端加裝功率因數修正電路(Power factor correction circuit)。但是加裝電路勢必增加制造成本,這些費用到最后一定會轉嫁給消費者,因此廠商在節省成本的考量之下,通常會以低價為重而不愿意讓客戶多花這些環保金。

大多數的消費者,因不了解功率因數修正電路的重要性,認為增加發電廠建設才是解決電力不足的唯一方案,這也是多數發展中國家的電力供應存在的共同問題。

一.功率因數的意義

電力公司經由輸配電系統送至用戶端的電力(市電)是電壓 100-110V/60Hz 或 200-240V/50Hz 的交流電, 而電氣產品的負載阻抗有三種狀況:包括電阻性、電容性、和電感性等。其中只有電阻性負載會消耗功率而產生光或熱等能源轉換,而容性或感性負載只會儲存能量,并不會造成能量的消耗。在純阻性負載狀況下,其電壓和電流是同相位的,而在電容性負載下,電流的相位是超前電壓的,在電感性負載下電壓又是超前電流相位的。

這超前或滯后的相位角度直接影響了負載對能量的消耗和儲存狀況,因此定義了實功功率的計算公式:P=VICosθ

θ為 V 和 I 和夾角,Cosθ的值介于 0-1 之間,此值直接影響了電流對負載作實功的狀況,稱之為功率因數(Power Factor,簡稱 PF)。

為了滿足消費者的需要,電力公司必須提供 S=VI 的功率,而消費者實際上只使用了 P 的功率值,有一部分能量做了虛功,消耗在無功功率上。PF 值越大,則消耗的無功功率越小,電力公司需要提供的 S 值也越小,將可以少建很多電廠。

二.功率因數校正器的架構

功率因數修正器的主要作用是讓電壓與電流的相位相同且使負載近似于電阻性,因此在電路設計上有很多種方法。其中依使用元件來分類,可分為被動式和主動式功因修正器兩種。被動式功因修正器在最好狀況下 PF 值也只能達到 70%,在嚴格的功因要求規范下并不適用。若要在全電壓范圍內(90V~265Vac)且輕重載情況下都能達到 80%以上 PF 值,則主動式功因修正器是必要的選擇。主動式功因修正器多為升壓式電路結構(Boost Topology),如下圖一所示。

ab07de82-f8e8-11ef-9310-92fbcf53809c.png




ab29e6b2-f8e8-11ef-9310-92fbcf53809c.png

圖二為電感作用波形,輸入電壓要求為 90V~265Vac,在 Vd 點則為 127V~375V 直流電壓, 由升壓電路把輸出電壓 Vo 升到 400V 的直流,其工作過程如下:

1、 當 Q 導通時,電感上的電壓 VL=Vd,此時 Vd、L、Q 形成回路,Vd 對電感 L 充電,回路如圖一中虛線所示,此時電感電流ζL 循著同一斜率上升,到 Q 截止為止,工作周期(DT)結束。

2、 當 Q 截止時,電感電壓反相且加上 Vd 經由二極管 D 對輸出端開始放電,此時電容 C 是成充電狀態,且RL 維持 Vo 輸出,其中 Vo 之大小為輸入電壓 Vd 加上電感電壓(-VL)的值(由于電感電壓反相,-VL 反而是正值),其回路如圖一中灰線所示,直到 Q 再度導通為止(即(1-D)T 時間段結束)。

如果要圖一中的升壓型電路具有功率因數修正功能的話,則 Q 的控制信號必須來自具有功因修正功能的 IC(PFC IC),并要取電壓回路和電流回路來做反饋控制,把這些信號回傳到 PFC IC 來控制 Q 的導通與截止,進而達到電流波形整形的目的。

PFC IC 分為兩種,一種是非連續電流模式功因修正器(DCM PFC),適用于較低功率需求的功因修正。歐洲的能源規范定為 70W 以上的電源供應器必須加裝 PFC 電路,DCM PFC 一般使用在 200W 以下。另外一種是連續電流模式功因修正器(CCM PFC),一般使用在 200W~9KW。

ab7790f6-f8e8-11ef-9310-92fbcf53809c.png

三.DCM PFC的控制方式

無論 CCM 或 DCM 的 PFC,其電路結構都是升壓電路,其中最大的區別在于控制模式,DCM PFC 一般使用峰對峰值電流控制模式(如圖三所示)。此種模式主要是當 AC 輸入后,經橋式整流而成的類似 m 形的電壓波形,經 R5、R6 分壓后,再和一個經由誤差放大器(Error Amplifer)放大后的輸出信號 Vc 相乘。此舉是為了給流經 Rs 的峰值電流一個參考比較的電壓 Vm,并且這個電壓會隨著輸入和輸出的電壓大小而作調整,其中輸出電壓經由電阻 R3 和 R4 分壓后, 經由誤差放大器負反饋至乘法器輸入端,可使當負載改變時,輸出電壓仍能保持穩定。

其中較需注意的是,誤差放大器在作閉環回路補償時,其增益頻寬要比六分之一倍的市電頻率還要低,以避免干擾PFC 電路的主要功能,所以 C1 和 C2 的值通常都不小,約為 uF 級的電容。當乘法器輸出 Vm 時,同一時刻的電壓波形仍是一個類似 m 形的波形,只是它是已被整理過的參考電壓波形,進而輸入比較器的正輸入端,而與比較器的負輸入端 Q 的 S 極電流的波形(即壓降在 Rs 上的電壓波形 Vs)作比較, 來控制 Q 的開與關,其波形如圖四。

aba332a6-f8e8-11ef-9310-92fbcf53809c.png

起初,當 Q 導通時,輸入的直流高壓 Vd 對電感 L 充電,使電感的電流ζL 上升(如圖四中電感電流波形的 a 到b 點),此時 Rs 上的電壓 Vs 也上升,直到 Vs=Vm 時(即 b 點),由于此時比較器(Current Comp)的反相輸入端電壓高于正相輸入端,故 RS 觸發器(RS Flip-Flop)的 R 輸入端為低電位, 而此時 S 端為高電位,使觸發器輸出為高電位,使 Qd 導通,而 Vg 為低電位,Q 為截止的狀態,電感上電壓 VL 反相,加上輸入電壓 Vd 使二極管 D 導通,開始對輸出 RL 和 C5 放電(圖中的 b 到c 點),此時負載 RL 仍保持在高電位,而電容 C5 則承受電感放電而呈充電狀態,直到電感放電到ζL 值為 0(c 點)為止。

當電感電流ζL 為 0 時,RS 觸發器的S 端輸入低電平,而 R 端為高電位(因為 Vm>Vs),此時觸發器的Q 輸出為低電位,使 Qd 截止,Q 的 VGS 為高電位,于是 Q 導通,電感的電壓 VL 為正向,輸入電壓 Vd 供應電流流過電感 L 和Q,對電感 L 充電,故流經電感 L 的電流又繼續上升,直到三角波電壓 Vs 又碰到 m 形波Vm 為止(c 到 d 段),如此反復,電路以此種峰值電流控制模式的方法來得到ζL 電流波形。

ζL 的波形是由許多大小三角波所組成,它畢竟不是正弦波,故電路中必須加裝一個 C3 電容來濾除電感電流中的高頻成分,而使輸入弦波電流ζ為完整的基本弦波成分,其大小為電感電流ζL 的平均值。基本上的ζL 峰值大概為電流ζ峰值的 2 倍,這可作為選擇 Q 的耐電流量參考。

四.CCM PFC的控制方式

對于 CCM 的PFC 而言,常用的控制模式是所謂的平均電流控制模式,其控制模式電路如圖五所示。

abd6ba2c-f8e8-11ef-9310-92fbcf53809c.png

圖中的 Vin 為直流電壓而 Ip 為直流電流。其各點的電壓及電流波形如圖六所示。

ac217436-f8e8-11ef-9310-92fbcf53809c.png

其中 Q 的柵極受控于 PWM 比較器的 Vs 電壓和Vc 電壓的比較結果:當 Vs 大于 Vc 時,比較器輸出為低電位,而 Vs 小于 Vc 時,比較器輸出為高電位。因此電路剛開始運作時,Vs 小于 Vc,此時比較器輸出高電位,Q 導通。如圖五中 Vin 循著虛線路徑向電感 L 充電, 故電感電流ζL 上升(a 到 b 段),到 b 點時,由于 Vs 大于 Vc 時,比較器輸出由高電位變成低電位,Q 截止,Vin 電壓加于電感 L 的反向電壓經二極管 D 向電容 C 充電,并供應電壓給負載(如圖中灰色路線),此時電感 L 為放電狀態,故電感電流ζL 下降(b 到 c 段),到 c 點時,Vs小于 Vc,此時比較器又輸出高電位,使 Q 再度導通。如此周而復始,以電流放大器的電流波形和鋸齒波相互比較而產生 Q 的驅動波形,達到以平均電流來控制負載電壓的目的。

請注意圖六中的波形,在 ab 段或cd 段等單數時間段時,Vc 電壓的波形在要和 Vs 交錯前必定是負斜率, 此時 Vs 為正斜率,并且必定要交錯,否則無法控制,而在 bc 段或 de 段等偶數段時,Vc 和 Vs 都是正斜率,可是 Vc 的斜率必定要比 Vs 小,否則無法交錯,也無法控制,因此在設計控制電路時,必需要注意到這些控制的重點來安排周邊元件參數,否則不是電路無法動作,就是電路失控而損壞。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 開關電源
    +關注

    關注

    6478

    文章

    8405

    瀏覽量

    484826
  • 功率因數
    +關注

    關注

    10

    文章

    575

    瀏覽量

    39609
  • PFC
    PFC
    +關注

    關注

    47

    文章

    994

    瀏覽量

    106667
  • 校正電路
    +關注

    關注

    2

    文章

    32

    瀏覽量

    27435

原文標題:開關電源典型拓撲—PFC應用意義及工作原理

文章出處:【微信號:zfdzszy,微信公眾號:張飛電子實戰營】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    開關電源功率因數校正電路設計與應用

    開關電源功率因數校正電路設計與應用文檔供大家參考。
    發表于 01-03 14:29

    有源功率因數校正電路和無源功率因數校正電路介紹

    。根據是否采用有源器件可將拓撲分為有源功率因數校正電路和無源功率因數校正電路。  (1) 無源功率因數
    發表于 04-03 14:37

    有源功率因數校正技術介紹

    開關功率因數校正電路的原理,包括單相、三相有源箱位零電壓開關功率因數校正電路。 本書可作為電氣工
    發表于 09-19 07:12

    高性能軟開關功率因數校正電路的設計

    高性能軟開關功率因數校正電路的設計介紹了功率因數校正控制電路
    發表于 04-12 17:58 ?87次下載

    開關電源功率因數校正技術及功率級設計

    摘要:本文較詳細地分析了普通開關電源功率因數過低的原因及產生的危害,簡要分析了各類功率因數校正電路的工作原理及主要優缺點,還介紹了功率因數
    發表于 12-14 12:46 ?46次下載

    高性能軟開關功率因數校正電路的設計

    高性能軟開關功率因數校正電路的設計 摘要:介紹了功率因數校正控制電路
    發表于 07-14 08:17 ?890次閱讀
    高性能軟<b class='flag-5'>開關</b><b class='flag-5'>功率因數</b><b class='flag-5'>校正電路</b>的設計

    開關電源功率因數校正的DSP實現

    開關電源功率因數校正的DSP實現   摘要:介紹了用TI公司的TMS320LF2407A實現開關電源功率因數
    發表于 07-15 09:12 ?1138次閱讀
    <b class='flag-5'>開關電源</b><b class='flag-5'>功率因數</b><b class='flag-5'>校正</b>的DSP實現

    無源無損軟開關功率因數校正電路的研制

    無源無損軟開關功率因數校正電路的研制  在開關電源引入功率因數
    發表于 11-05 10:17 ?1533次閱讀
    無源無損軟<b class='flag-5'>開關</b><b class='flag-5'>功率因數</b><b class='flag-5'>校正電路</b>的研制

    基于BCM的有源功率因數校正電路的實現

    基于BCM的有源功率因數校正電路的實現 摘要:分析整流電路的拓撲結構和工作模式,探討該整流電路關鍵參數的選取依據,提出臨界導電模式(BCM)功率因
    發表于 03-13 10:50 ?2673次閱讀
    基于BCM的有源<b class='flag-5'>功率因數</b><b class='flag-5'>校正電路</b>的實現

    開關電源的有源功率因數校正技術

    開關電源的有源功率因數校正技術介紹。
    發表于 09-22 16:42 ?58次下載

    開關電源功率因數校正電路設計

    隨著開關電源的廣泛應用,開關電源功率因數校正技術已成為提高開關電源效率、減少電網污染的核心技術,顯示出了強大的生命力。《
    發表于 11-16 16:16 ?26次下載
    <b class='flag-5'>開關電源</b><b class='flag-5'>功率因數</b><b class='flag-5'>校正電路</b>設計

    開關電源功率因數校正電路設計與應用實例 [周志敏,紀愛華 編] 2012年版

    開關電源功率因數校正電路設計與應用實例 [周志敏,紀愛華 編] 2012年版(開關電源技術發展方向)-隨著開關電源的廣泛應用,
    發表于 09-24 15:39 ?0次下載
    <b class='flag-5'>開關電源</b><b class='flag-5'>功率因數</b><b class='flag-5'>校正電路</b>設計與應用實例 [周志敏,紀愛華 編] 2012年版

    開關電源的有源功率因數校正技術

    開關電源的有源功率因數校正技術分享。
    發表于 04-25 10:45 ?15次下載

    功率因數校正電路開關管驅動方案

    功率因數校正電路開關管驅動方案
    發表于 11-01 08:26 ?3次下載
    <b class='flag-5'>功率因數</b><b class='flag-5'>校正電路</b>的<b class='flag-5'>開關</b>管驅動方案

    高性能軟開關功率因數校正電路的設計

    電子發燒友網站提供《高性能軟開關功率因數校正電路的設計.doc》資料免費下載
    發表于 10-27 11:23 ?1次下載
    高性能軟<b class='flag-5'>開關</b><b class='flag-5'>功率因數</b><b class='flag-5'>校正電路</b>的設計
    主站蜘蛛池模板: 黄视频在线免费看 | 黄色免费大全 | 色片免费网站 | 日本三级欧美三级香港黄 | 国产理论在线观看 | 亚洲午夜日韩高清一区 | 高清人人天天夜夜曰狠狠狠狠 | 国模大尺度人体一区 | 末成年一级在线看片 | 中文字幕在线一区二区在线 | 好吊色青青青国产在线观看 | 1024手机最新手机在线 | 免费福利在线播放 | 色综合网天天综合色中文男男 | 激情综合在线 | 天天视频免费入口 | 在线天堂中文在线资源网 | 天天操天天干天天透 | 成 人网站免费 | 1024国产手机视频基地 | 亚洲成人免费在线 | 性试验k8经典 | 日本黄色美女网站 | 特级片在线观看 | 国产午夜精品一区二区三区 | 757福利影院合集3000 | 天天操天天曰 | 色天使久久综合网天天 | 一级毛片免费网站 | 欧美zooz人禽交免费观看 | 六月婷婷在线观看 | 国产一区二区影院 | 色播在线| 中文字幕久久精品波多野结 | 国产三级日本三级日产三 | 天堂社区在线观看 | 5566精品资源在线播放 | avtt天堂网永久资源 | 福利一区在线观看 | 操操操干干 | 国产99久9在线视频 国产99久久九九精品免费 |