SLAM技術作為機器人自主移動的關鍵技術,讓很多人都誤解為:SLAM=機器人自主定位導航。
其實,SLAM≠機器人自主定位導航,不解決行動問題。
SLAM如其名一樣,主要解決的是機器人的地圖構建和即時定位問題,而自主導航需要解決的是智能移動機器人與環境進行自主交互,尤其是點到點自主移動的問題,這需要更多的技術支持。
要想解決機器人智能移動這個問題,除了要有SLAM技術之外,還需要加入路徑規劃和運動控制。在SLAM技術幫助機器人確定自身定位和構建地圖之后,進行一個叫做目標點導航的能力。通俗的說,就是規劃一條從A點到B點的路徑出來,然后讓機器人移動過去。
機器人自主定位導航= SLAM+路徑規劃和運動控制
運動規劃主要分為:全局規劃、局部規劃。
全局規劃
全局規劃,顧名思義,是最上層的運動規劃邏輯,它按照機器人預先記錄的環境地圖并結合機器人當前位姿以及任務目標點的位置,在地圖上找到前往目標點最快捷的路徑。
局部規劃
當環境出現變化或者上層規劃的路徑不利于機器人實際行走的時候(比如機器人在行走的過程中遇到障礙物),局部路徑規劃將做出微調。
這兩個層次的規劃模塊協同工作,機器人就可以很好的實現從A點到B點的智能移動了。不過實際工作環境下,上述配置還不夠。因為運動規劃的過程中還包含靜態地圖和動態地圖兩種情況。
A*算法
A*(A-Star)算法是一種靜態路網中求解最短路徑最有效的直接搜索方法,也是解決許多搜索問題的有效算法。算法中的距離估算值與實際值越接近,最終搜索速度越快。但是,A*算法同樣也可用于動態路徑規劃當中,只是當環境發生變化時,需要重新規劃路線。
D*算法
D*算法則是一種動態啟發式路徑搜索算法,它事先對環境位置,讓機器人在陌生環境中行動自如,在瞬息萬變的環境中游刃有余。D*算法的最大優點是不需要預先探明地圖,機器人可以和人一樣,即使在未知環境中,也可以展開行動,隨著機器人不斷探索,路徑也會時刻調整。
上述的幾種算法都是目前絕大部分機器人所需要的路徑規劃算法,能夠讓機器人跟人一樣智能,快速規劃A到B點的最短路徑,并在遇到障礙物的時候知道如何處理。但掃地機器人作為最早出現在消費市場的服務機器人之一,它需要的路徑規劃算法更為復雜。
-
機器人
+關注
關注
211文章
28694瀏覽量
208653 -
SLAM
+關注
關注
23文章
426瀏覽量
31938
原文標題:機器人自主定位導航=SLAM+運動規劃
文章出處:【微信號:ofweekgongkong,微信公眾號:OFweek工控】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論