恰好就在今天,蘇黎世聯邦理工學院公布了超過10000部安卓手機和芯片的AI Benchmark深度學習處理性能分數。結果不出意料,搭載專用AI處理器的華為麒麟970芯片得到了最高的AI-Score分數——超過6000分,幾乎是第二名的三倍。
完整列表:http://ai-benchmark.com/ranking.html。
隨著手機芯片AI化的兩個主流玩家新品的亮相,即華為麒麟980和蘋果的A12處理器的推出,已經為手機端AI芯片2019年的競爭格局定下了基調。
AI芯片在智能手機中的應用,已經從在拍照中的物體識別、場景識別(如華為P20 Pro中AI攝影大師),發展到針對視頻中人體姿態、動作進行實時AI分析的全新功能(如今年IFA展上,華為基于麒麟980推出的“慧眼2.0”),競爭門檻也進一步拉高。
我們看到,在華為、蘋果頭部玩家的引領下,AI芯片成為智能手機標配的同時,這一領域的馬太效應也越來越明顯。與此同時,AI芯片行業也走過了野蠻生長,開啟了加速落地模式,全芯片產業鏈都開始積極擁抱人工智能。
擁有先發優勢的玩家們,則更為積極地在AI芯片道路上飛速奔跑。先是8月的最后一天,華為在德國IFA展上率先推出了新一代的AI芯片麒麟980芯片,半個月后,蘋果在新款iPhone上搭載了新一代的仿生芯片A12。幾天前,華米推出了全球智能可穿戴第一顆AI芯片黃山一號。
在業界最受關注的華為和蘋果手上的兩顆AI芯片落子后,AI芯片在手機端的應用也將進入到一個全新的普及階段。在技術和應用落地方面,都產生了極大的突破。
基于智東西過去一年對AI芯片行業持續的跟蹤報道和產業鏈廣泛的調研 ,我們發現,以手機芯片為代表的終端AI芯片正呈現五大典型發展趨勢。這五大趨勢不僅是華為、蘋果們的發力點,也將大幅度升級AI芯片加持下的移動終端體驗。換句話講,這一輪圍繞這五大趨勢的AI芯片行業升級,將很大程度上影響未來智能手機江湖市場格局。
AI芯片氣勢如虹 智能手機成最大受益者
業內一般認為,AI芯片指的是根據神經網絡等AI算法,進行特殊設計的芯片。根據應用場景劃分,AI芯片目前可分為用于云端服務器機房等地的云端AI芯片,以及用于端智能、IoT設備的終端AI芯片。
對于手機來說,芯片是其大腦和靈魂,集合著CPU、GPU、DSP、通信模塊等實現其他功能的硬件基礎,也是智能手機中高低檔劃分的重要指標。芯片作為底層基礎,也決定著智能手機性能的想象空間。
在華為率先在傳統的手機SoC中加入獨立的AI獨立處理單元NPU后,AI獨立處理單元的設計也成為了行業的發展趨勢。
AI獨立處理單元的加入,全面提升了智能手機的用戶體驗。在拍照、解鎖、游戲等智能手機的廣泛應用中都會應用到AI處理模塊的運算能力,對手機運算速率的提升有極大的影響。
從目前來看,手機是AI芯片最大的獲利行業,同時手機端的AI芯片進展也在引領著整個終端AI芯片行業的發展。
終端AI芯片的五大行業趨勢
2017年9月2日,華為率先發布了全球首款人工智能移動計算平臺麒麟970,創新性地集成人工智能專用NPU神經網絡單元,打響了AI芯片落地智能手機的第一槍。
緊接著,10月20日,華為在上海發布了搭載這款AI芯片的年度旗艦手機Mate10,將AI算力全面釋放到智能手機中,給手機用戶帶來了前所未有的AI場景識別、AI翻譯等多項創新性體驗。
在麒麟970發布后,科技巨頭蘋果也不約而同的采用了這一策略,在9月13日發布iPhone X,使用了自研的手機芯片A11,其中內置了名為Neural Engine的神經網絡處理單元。
進入到2018年,終端AI芯片的戰火越燃越旺,芯片產業鏈上下游的IP授權商、設計商、制造商都聯動起來,共同開發終端的AI算力。
上半年,老牌芯片公司ARM推出了機器學習平臺Project Trillium以及兩款人工智能IP、中端手機芯片巨頭聯發科發布支持AI和計算機視覺的芯片Helio P60、手機芯片巨頭高通推出基于其梟龍芯片系列的人工智能引擎(AI Engine)。
下半年,在終端AI芯片上開山辟路的華為,又帶頭向前邁出了一大步,推出全球首款7nm工藝、“雙核NPU”設計的AI芯片——麒麟980。兩周后,蘋果也繼續跟進推出了7nm工藝的新一代的仿生芯片A12。
手機芯片巨頭高通將在今年年底發布新一代旗艦芯片驍龍855,據說驍龍855中也將采用專用的AI模塊,目前國內某AI芯片創企已收取NRE費用,為其開發人工智能IP模塊。
在新玩家不斷涌入,老玩家進一步開山辟路的行業鏖戰期,智東西發現,目前終端AI芯片正呈現著以下五大行業趨勢:
1、架構升級,多核心多單元配合
以往的手機芯片普遍是以CPU(中央處理器)/GPU(圖形處理器)/DSP(數字信號處理)為核心的傳統計算架構,但這種架構難以支持AI海量數據計算。玩家們為了在終端上實現AI計算,選擇了不同的架構方式。
華為作為業內第一個推出手機AI芯片的玩家,在麒麟970中率先單設了一個專門的AI硬件處理單元NPU。今年的麒麟980則依然延續了NPU的設計,但將原本的單核升級成了雙核,在性能上也有了大幅度的提升。
雙核NPU的升級主要體現在視頻檢測、物體細節識別、物體分割三方面上:原先單核NPU進行AI物體實時識別時只能認出輪廓,現在可以識別出畫面細節;原先只能實時處理圖像,現在則可以做到實時視頻檢測和處理;原先在實現畫面實時物體分割時線條輪廓較為粗放,現在在雙核NPU的驅動下則能做到更精細。
CPU方面,麒麟980也從去年麒麟970的4大核+4小核,升級到了2個超大核+2大核+4小核的全新設計,這三種核的分工不同,小核能夠支持音樂、短信這類日常使用,大核能夠支持社交軟件、圖片軟件這類應用,超大核則是用來處理對性能要求比較高的游戲等應用。
GPU方面,去年的麒麟970用上了ARM推出的Mali-G72 MP12架構——這是Mali-G72 MP12 GPU的首次商用。這個架構很厲害,比上一代的Mali-G71性能提高了40%,能效提高了25%。而在今年的麒麟980,則采用了基于Mali G76打造的GPU,能夠做到性能提高46%,能效提升178%。
架構升級,多核多單元的方案也同樣在蘋果A系列芯片上體現。
與華為類似,蘋果在芯片中添加了一個專用于機器學習的硬件——“神經網絡引擎(Neural Engine)”。
去年推出的A11處理器中,神經網絡引擎采用了雙核設計,今年的A12芯片則將神經網絡引擎數量提升到了8個。在CPU方面,蘋果A12的整體框架沒有調整,依然采用2個大核(性能核)+4個小核(能效核)的結構。
為了使得多核間更好的調度和配合,華為還專門打造了一條靈活調度的智能CPU調度方案,能夠自動為應用配備適合的CPU核來計算。
無論是雙核還是8核,通過核數的調整,大小核的配合,一直是芯片進化的一個很重要的技術方向。
2、工藝制程升級,決勝7nm普及落地
在芯片上,集成電路的精細度,是一個重要的行業指標。目前,半導體芯片主流制程工藝為14nm和10nm。在同樣的材料中集成更多的電子元件,連接線越細,精細度就越高,芯片的功耗也就越小。
除制程工藝限制外,由于7nm芯片制造的難度巨大,幾乎逼近了硅基芯片的物理極限,需要的研發時間和資金投入都非常高,因此,7nm芯片成為了長時間以來令業界頭疼的一個大問題。
不過,今年7nm制程在終端AI芯片上取得了突破性的進展。華為麒麟980是業內推出的首款7nm制程的手機芯片,由臺積電代工,比指甲蓋還小的硅片上集成了69億個晶體管。
其實,早在2015年華為就開始投入7nm技術的相關研究,據華為方面表示,麒麟980的研發費用則高達數億美元,幾十億人民幣。
蘋果今年推出的A12芯片,也同樣采用了7nm的技術工藝,由臺積電代工,集成69億個晶體管。據了解,今年年底將亮相的高通驍龍855也將采用7nm工藝。
與此同時,其他芯片代工或制造廠,在7nm芯片的研發上,則似乎遭遇了瓶頸。
三星半導體的7nm目前還沒有確切消息傳出,這也導致就連高通今年也將驍龍855的訂單交給了臺積電而非三星,而英特爾的10nm芯片也處于難產狀態。
上個月,全球第二大芯片代工廠格芯宣布,將暫停開發7nm技術。這也導致了隨后全球第二大微處理器廠AMD表示,所有7nm產品包含服務器芯片與顯卡,都將交由晶圓代工龍頭臺積電代工。
雖然,7nm制程仿佛一道鴻溝,將芯片玩家分成了兩撥。但前面所提到的玩家,尤其是華為,在對7nm工藝落地的不懈追求。因此我們也看到,摩爾定律仍然沒有消失,仍然在持續引領人類對芯片制造極限的挑戰。
3、系統層為AI開發者鋪路架橋
為了將AI芯片的計算能力開放給更多的開發者使用,玩家們一邊在布局AI芯片硬件的同時,一邊也在進行系統級的AI優化。玩家們也會推出對應的AI模塊、框架、API給開發者,便于開發更豐富的應用,通過獲得更好的AI性能,最大程度上發揮AI硬件的性能。
在系統優化和面向開發者布局方面,華為有HiAI、蘋果有Core ML,而高通則有AI Engine。
4、應用AI化升級 拼質量拼生態
“得開發者得天下”,除了手機廠商自家的系統級的AI應用外,好APP也是消費者選擇購買智能手機的一大理由。與此同時,應用生態構建的建設也將成為時下競爭的熱點。
而為了讓第三方的AI應用能夠真正運行得好,不僅僅是NPU單一硬件組件的問題,而是系統軟硬件調配的過程,對于第三方應用開發者來說是一個難點。
為了配合NPU華為還面向第三方開發者開放HiAI移動計算平臺的人工智能計算庫HiAI API,便于開發者在移動設備上編寫AI應用,而HiAI平臺也成為華為構建AI APP生態的核心。
作為華為AI生態布局的核心,HiAI平臺可提供3大類的API,CV機器視覺引擎、ASR引擎和NLU(自然語言)引擎,以及和微軟合作的IDE計算模型。
在華為手機的應用商店里,設有AI應用專輯,通過將HiAI平臺的能力開放給第三方應用開發者,構建起手機終端應用生態。
目前已經有不少第三方應用已經接入了HiAI平臺的AI能力,比如微軟翻譯、快手、抖音、京東、美團、Prisma等,它們有的采用視頻處理優化技術、有的采用圖像識別掛鉤電商技術、有的則采用濾鏡美化類技術,圖像處理速度最高能達到原來安卓機器性能的10倍。
為了激勵開發者,在今年舉辦的首屆華為終端開發者大會上,華為表示將面向開發者全面開發“芯-端-云”能力框架,同時,通過耀星計劃、DigiX創新工作室加速終端應用和場景化內容開發,并宣布每年投資10億元用于扶持開發者生態建設。
可以看到,在應用方面,搭好舞臺吸引更多開發者唱好戲、多唱戲是終極目的,這里的搭好舞臺其實就是AI應用生態的競爭。蘋果在這方面一直很重視,華為則在技術支持、資金扶持發力。
5、體驗進化 AI計算實現實時處理
在消費者體驗方面,華為也更具創新性和技術實力。用戶能從攝影、通話等方面直觀地感受到AI芯片加持下的性能提升。
拍照功能是將手機AI芯片能力發揮最淋漓盡致的功能之一,而從最近幾款旗艦手機的表現看,一個共同趨勢越來越明顯,即很多實時處理結果前移,也就是很多AI處理結果變得所見即所得了。典型案例就是目前手機廠商主打的AI場景識別外,以及對圖像深度信息和細節的智能補充。
今年4月,華為推出業內首款搭載三個攝像頭的P20 Pro,并在P20 Pro上搭載AI攝影大師(Master AI)功能。也正式憑借著這一功能,華為P20 Pro憑借109分的成績登頂了DxOMark手機拍照性能榜單。
AI攝影大師(Master AI)通過在算法架構維度上設計了一個推薦引擎來實時獲取取景畫面的信息,可以根據場景識別、人臉檢測的結果,按照預定義的規則執行推薦,上報到用戶操作界面。
同時,AI攝影大師(Master AI)還將記錄當前使用者的操作行為并反饋給推薦引擎。通過不斷學習用戶的使用習慣,逐漸達到能夠向該用戶推薦對其量身定制的、令其滿意的拍照模式的目的。
目前,通過圖像理解、語義分割算法以及模型訓練結果,AI攝影大師可以智能識別/區分19個類別,500+個場景。
在手機最核心的通信功能方面,以通訊設備廠商起家的華為有著20多年的實戰經驗,現在更是做到了全球數一數二的通訊巨頭,在信息傳輸、通話、5G等方面都有著深厚的積累。尤其在高鐵通話方面,華為深入到芯片層面,利用“提前識別切換區域”方法,讓信號在飛馳的列車上仍可以順暢銜接。最明顯的感觸就是,在高鐵上用華為手機打電話“不掉話”。
此外,蘋果在剛剛推出的iPhone Xs和iPhone Xs Max上搭載的“智能HDR”和“景深控制功能”(Bokeh),也是實時處理前移的典型案例。
華為率先試水AI,成安卓陣營首發
終端AI芯片的廣闊天地
AI能力下放到終端是2018年的重要行業趨勢趨勢,除手機這一出貨量最大的終端產品外,其他的終端AI芯片也非常火爆,比如安防、自動駕駛、智能家居、可穿戴等。
在安防領域,深思創芯、中星微電子、云天勵飛、耐能等紛紛推出內嵌于安防監控攝像頭的AI芯片;在自動駕駛領域,由英偉達、英特爾這樣的芯片巨頭,和地平線等創業公司整合成為自動駕駛計算平臺。
智能家居領域,則主要圍繞語音AI展開,典型產品包括亞馬遜打造Echo智能音箱AI芯片、啟英泰倫打造的家用電器語音AI芯片、杭州國芯打造語音AI芯片等。今年3月,英偉達也宣布將自己的AI芯片Xavier集成到Arm的AI項目Project Trillium里面,讓IoT芯片廠商容易地打造AI芯片。
從終端AI芯片應用場景的多元性可以看到,AI正在以芯片為基礎,在帶來更多新應用的同時,正在促生著一場終端設備革命的到來,加速著硬件市場產業的發展。
結語:手機AI芯片進入普及爆發期
2017年可以說是AI芯片的概念普及和創業熱情爆發期,其中華為率先開創了手機AI芯片的先河,華為也攜手科技巨頭蘋果在2017年為智能手機行業奠定了AI算力下放到終端的行業基調,全面點燃了手機終端AI芯片研發的熱情。
進入2018年,整個智能手機AI芯片產業鏈都被聯動起來,三星、高通、聯發科等都在涌入激烈的市場競爭中。與此同時,華為和蘋果兩家則憑借敏銳的行業前瞻性和先發優勢,繼續在行業前端奔跑,引領行業發展的新趨勢。
隨著華為麒麟980和蘋果A12芯片的相繼推出,未來一段時間的手機AI芯片的行業趨勢也已經顯現:7nm制程工藝、多核多單元的架構設計、系統升級和開發者升級、應用升級、實時處理的前移,這五大行業趨勢將引領著手機AI芯片行業的爆發。
-
智能手機
+關注
關注
66文章
18563瀏覽量
181327 -
AI芯片
+關注
關注
17文章
1918瀏覽量
35284
原文標題:決定未來的手機AI芯片五大趨勢,華為蘋果率先起跑
文章出處:【微信號:WW_CGQJS,微信公眾號:傳感器技術】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
MediaTek 發布天璣 8400 移動芯片,開啟高階智能手機全大核計算時代

MediaTek 發布天璣 8400 移動芯片,開啟高階智能手機全大核計算時代

探索智能手機上的生成式AI
生成式AI手機如何借力MediaTek天璣平臺引領智能新紀元
SOC芯片在智能手機中的應用
美光引領LPDDR5X創新,助力智能手機提升AI體驗
谷歌Tensor G5芯片代工轉向臺積電,強化AI智能手機競爭力
摩托羅拉與谷歌云將生成式AI引入全新razr系列智能手機
OPPO引領AI手機新時代,全面普及智能生活
Arm發布新一代旗艦智能手機芯片設計
開發者手機 AI - 目標識別 demo
OPPO公布全新AI戰略,AI 手機時代再提速

評論