在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI大夫來(lái)了,人類醫(yī)生真的要失業(yè)嗎?

傳感器技術(shù) ? 來(lái)源:YXQ ? 2019-05-14 16:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

1996年夏季的一天,瑞典蘭德大學(xué)附屬醫(yī)院,冠狀動(dòng)脈特護(hù)病房的五十歲的漢斯.沃林主任坐在辦公室里。他的辦公桌上堆著2240份心電圖。他獨(dú)自一個(gè)人在辦公室里審閱他們。他把代表疾病發(fā)作的心電圖挑選出來(lái)。為了避免疲倦帶來(lái)的疏忽,他每?jī)蓚€(gè)小時(shí)休息一次。這就是醫(yī)學(xué)界的深藍(lán)大戰(zhàn)。沃林就是心臟病學(xué)的棋王卡斯帕羅夫,他將與電腦進(jìn)行閱讀心電圖的世紀(jì)對(duì)決。

對(duì)醫(yī)學(xué)院的學(xué)生來(lái)說(shuō),心電圖看起來(lái)很復(fù)雜,難以理解,圖中包含了十二導(dǎo)聯(lián),每一個(gè)導(dǎo)聯(lián)都會(huì)產(chǎn)生一種不同的曲線記錄,每一種曲線都有英文字母做標(biāo)識(shí)。心電圖實(shí)在太復(fù)雜,有些細(xì)微的變化很容易被忽略掉,即使是專家的判斷也不能保證百分之百正確。

瑞典的拉爾斯.伊登布蘭特發(fā)起了一個(gè)實(shí)驗(yàn)。他將一萬(wàn)多名病人的心電圖資料輸入他的電腦系統(tǒng),并告訴電腦哪種情況代表心臟病發(fā)作,哪種情況代表正常,直到電腦通過(guò)學(xué)習(xí)變成專家。電腦甚至可以讀懂最復(fù)雜的心電圖。接下來(lái),他邀請(qǐng)沃林參與試驗(yàn)。沃林是瑞典頂尖的心臟專科醫(yī)生,每年閱讀上萬(wàn)份的心電圖,伊登布蘭特從醫(yī)院病歷檔案中挑選了2240份心電圖,其中恰好一半是有心臟病疾病的。他將這些心電圖分別交給電腦和沃林去診斷,1997年秋天實(shí)驗(yàn)結(jié)果被低調(diào)的發(fā)表出來(lái),沃林正確的挑出了620份,電腦在正確的挑出了738份,電腦以20%的優(yōu)勢(shì)擊敗了專家。

醫(yī)學(xué)界的這場(chǎng)深藍(lán)大戰(zhàn)的結(jié)果告訴我們,醫(yī)生的直覺(jué)和經(jīng)驗(yàn)有時(shí)候是靠不住的,它可能會(huì)帶來(lái)比電腦更多的錯(cuò)誤。不僅是醫(yī)學(xué),在眾多領(lǐng)域都有足夠多的證據(jù)支持這個(gè)結(jié)論。過(guò)去的四十年內(nèi),認(rèn)知心理學(xué)家不斷證實(shí),在預(yù)測(cè)和診斷方面,電腦系統(tǒng)常常勝過(guò)最頂尖的人類專家的判斷,包括預(yù)測(cè)每一件事,從一個(gè)公司是否會(huì)破產(chǎn),到一個(gè)肝病患者還能活多久,每個(gè)領(lǐng)域都有涉及,幾乎所有的案例分析大戰(zhàn)中,電腦要么與人類戰(zhàn)平,要么勝過(guò)人類。

人工智能在醫(yī)療領(lǐng)域的應(yīng)用歷史

上世紀(jì)三四十年代,Wiener、弗雷治、羅素的數(shù)理邏輯,和Church、圖靈的數(shù)字功用以及計(jì)算機(jī)處理促使了1956年夏的AI學(xué)科誕生。20世紀(jì)60年代以來(lái),生物模仿用來(lái)建立功能強(qiáng)大的算法。這方面有進(jìn)化計(jì)算,包括遺傳算法、進(jìn)化策略和進(jìn)化規(guī)劃。

1992年Bezdek提出計(jì)算智能。他和Marks(1993年)指出計(jì)算智能取決于制造者提供的數(shù)值數(shù)據(jù),含有模式識(shí)別部分,不依賴于知識(shí);計(jì)算智能是認(rèn)知層次的低層。今天,計(jì)算智能涉及神經(jīng)網(wǎng)絡(luò)、模糊邏輯、進(jìn)化計(jì)算和人工生命等領(lǐng)域,呈現(xiàn)多學(xué)科交叉與集成的趨勢(shì)。

人工生命以進(jìn)化計(jì)算為基礎(chǔ),研究自組織、自復(fù)制、自修復(fù)以及形成這些特征的混沌動(dòng)力學(xué)、進(jìn)化和環(huán)境適應(yīng),具體包括生命現(xiàn)象的仿生系統(tǒng)、人工建模與仿真、進(jìn)化動(dòng)力學(xué)、人工生命的計(jì)算理論、進(jìn)化與學(xué)習(xí)綜合系統(tǒng)以及人工生命的應(yīng)用等。

20世紀(jì)60年代,羅森布拉特研究感知機(jī),Stahl建立細(xì)胞活動(dòng)模型,Lindenmayer提出了生長(zhǎng)發(fā)育中的細(xì)胞交互作用數(shù)學(xué)模型。這些模型支持細(xì)胞間的通信和差異。

70年代以來(lái),Conrad等研究人工仿生系統(tǒng)中的自適應(yīng)、進(jìn)化和群體動(dòng)力學(xué),提出不斷完善的“人工世界”模型。

80年代,人工神經(jīng)網(wǎng)絡(luò)再度興起促進(jìn)人工生命的發(fā)展。其主要研究方法有信息模型法和工作原理法。其研究途徑分為工程技術(shù)途徑和生物科學(xué)途徑。

專家系統(tǒng)在90年代興起, 模擬人類專家解決領(lǐng)域問(wèn)題,知識(shí)庫(kù)的改進(jìn)與歸納是其重點(diǎn)。醫(yī)療專家系統(tǒng)(Medical Expert System,MES)是人工智能技術(shù)應(yīng)用在醫(yī)療診斷領(lǐng)域中的一個(gè)重要分支。在功能上,它是一個(gè)在某個(gè)領(lǐng)域內(nèi)具有專家水平解題能力的程序系統(tǒng)。醫(yī)學(xué)診斷專家系統(tǒng)就是運(yùn)用專家系統(tǒng)的設(shè)計(jì)原理與方法,模擬醫(yī)學(xué)專家診斷疾病的思維過(guò)程,它可以幫助醫(yī)生解決復(fù)雜的醫(yī)學(xué)問(wèn)題,可以作為醫(yī)生診斷的輔助工具,可以繼承和發(fā)揚(yáng)醫(yī)學(xué)專家的寶貴理論及豐富的臨床經(jīng)驗(yàn)。

當(dāng)今21世紀(jì),人工智能技術(shù)的醫(yī)學(xué)虛擬應(yīng)用不僅要對(duì)特定病人進(jìn)行模擬,而且要對(duì)整個(gè)治療過(guò)程中可能出現(xiàn)的反應(yīng)和問(wèn)題有一精確的預(yù)測(cè)和提出相應(yīng)的對(duì)策。這就是21世紀(jì)醫(yī)學(xué)虛擬現(xiàn)實(shí)的最后目標(biāo)。

在醫(yī)療領(lǐng)域AI能做什么?

虛擬助理

醫(yī)療虛擬助理的官方定義是,利用語(yǔ)音識(shí)別、自然語(yǔ)言處理技術(shù),將患者對(duì)自己病癥的描述與標(biāo)準(zhǔn)醫(yī)學(xué)知識(shí)庫(kù)進(jìn)行對(duì)比,從而完成患者自診、導(dǎo)診、咨詢等服務(wù)的信息系統(tǒng)。

與 Siri、Cortana 等通用虛擬助理不同的是,當(dāng)用戶與通用虛擬助理進(jìn)行對(duì)話時(shí),可以自由表達(dá),由虛擬助理理解用戶意圖(當(dāng)然理解能力還有待加強(qiáng));但當(dāng)用戶與醫(yī)學(xué)虛擬助理對(duì)話時(shí),由于患者的描述基本不是標(biāo)準(zhǔn)的醫(yī)學(xué)術(shù)語(yǔ),因此很難與標(biāo)準(zhǔn)醫(yī)學(xué)知識(shí)庫(kù)進(jìn)行對(duì)比從而得出結(jié)論。目前,醫(yī)療產(chǎn)業(yè)界的普遍做法是,以選擇題的方式與用戶溝通,了解問(wèn)題并分診。

病歷與文獻(xiàn)分析——幫助醫(yī)生提高效率

提到人工智能與醫(yī)療的結(jié)合,最常見(jiàn)的要數(shù)醫(yī)生通過(guò)語(yǔ)音輸入電子病歷。面向醫(yī)療場(chǎng)景的語(yǔ)音輸入技術(shù)已經(jīng)成為科大訊飛、云知聲等人工智能公司的搶灘重地。

語(yǔ)音輸入技術(shù)解放了醫(yī)生的雙手,這對(duì)牙科醫(yī)生來(lái)講尤其重要。口腔科醫(yī)生在手術(shù)臺(tái)上往往是一個(gè)人,雙手都被占用了,沒(méi)有手來(lái)書(shū)寫(xiě)病歷。用語(yǔ)音識(shí)別的方式能夠?qū)颊叩幕拘畔ⅰ⑹中g(shù)情況進(jìn)行一些基本的記錄,提高醫(yī)生工作效率。

在解放醫(yī)生雙手的同時(shí),電子病歷也起到了醫(yī)療人工智能發(fā)展的數(shù)據(jù)基石作用。在語(yǔ)音識(shí)別層面之下,如何利用自然語(yǔ)言處理技術(shù)將非結(jié)構(gòu)化的自然語(yǔ)言轉(zhuǎn)化為結(jié)構(gòu)化的數(shù)據(jù),以便后續(xù)進(jìn)行數(shù)據(jù)挖掘,是一個(gè)重要課題。利用自然語(yǔ)言處理技術(shù)將病歷上的非結(jié)構(gòu)化數(shù)據(jù)轉(zhuǎn)變成結(jié)構(gòu)化數(shù)據(jù)主要分為以下幾個(gè)步驟。首先,要對(duì)句子中的命名實(shí)體進(jìn)行識(shí)別,簡(jiǎn)單地說(shuō)就是哪些詞是疾病、哪些詞是藥品、哪些詞是癥狀、哪些詞是手術(shù)名,也就是對(duì)各種各樣詞語(yǔ)類別的分類。然后,需要查找語(yǔ)義之間的關(guān)聯(lián),也就是說(shuō)誰(shuí)修飾了誰(shuí)、誰(shuí)約束了誰(shuí)、誰(shuí)否定了誰(shuí)等,也即定義詞語(yǔ)和詞語(yǔ)之間的線性關(guān)系。“語(yǔ)義關(guān)聯(lián)為什么在醫(yī)療領(lǐng)域尤其重要?比如你光知道這個(gè)人疼,不夠。你還要知道疼痛的部位、嚴(yán)重程度、時(shí)間、急慢性等附屬信息,這些信息才是重要的。”

在醫(yī)療領(lǐng)域的自然語(yǔ)言處理技術(shù)中,常常需要面對(duì)輸入不標(biāo)準(zhǔn)的情況。每個(gè)醫(yī)生都有自己的病歷書(shū)寫(xiě)習(xí)慣,比如心肌梗塞這一種疾病,有的醫(yī)生會(huì)寫(xiě)心肌梗塞,有的醫(yī)生會(huì)寫(xiě)心肌梗死、心梗,甚至寫(xiě)英文 MI(Myocardial Infarction)。

對(duì)于機(jī)器來(lái)說(shuō),在存儲(chǔ)時(shí)必須知道這些詞代表著同樣的意思,后續(xù)的工作才能進(jìn)行。否則就連一個(gè)最簡(jiǎn)單的檢索任務(wù)都進(jìn)行不了,因?yàn)殛P(guān)鍵詞沒(méi)法匹配。另外,自然語(yǔ)言處理技術(shù)還能夠幫助醫(yī)生提高科研效率。

醫(yī)療影像輔助診斷——減少誤診漏診率

人工智能在醫(yī)療健康領(lǐng)域中的應(yīng)用領(lǐng)域包括虛擬助理、醫(yī)學(xué)影像、藥物挖掘、營(yíng)養(yǎng)學(xué)、生物技術(shù)、急救室/醫(yī)院管理、健康管理、精神健康、可穿戴設(shè)備、風(fēng)險(xiǎn)管理和病理學(xué)。其中人工智能+醫(yī)療健康各細(xì)分領(lǐng)域中,醫(yī)學(xué)影像項(xiàng)目數(shù)量最多。

從上圖可以看出,醫(yī)療影像領(lǐng)域的投融資交易數(shù)量最高。有需求就有市場(chǎng),病患多醫(yī)生少、醫(yī)療壓力巨大是造成這種結(jié)果的最大的原因。再加上現(xiàn)在圖像識(shí)別技術(shù)的成熟、電子膠片的普及、放射科醫(yī)師的缺乏是推動(dòng)市場(chǎng)發(fā)展的主要因素;影像輔助診斷的使用和普及存在巨大的益處,對(duì)于患者而言,在影像輔助診斷的幫助下,和以往傳統(tǒng)的醫(yī)療手段相比較,將快速完成健康檢查,同時(shí)獲得更精準(zhǔn)的診斷建議和個(gè)性化的治療方案;對(duì)醫(yī)生而言,可以節(jié)約讀片時(shí)間、降低誤診率并獲取提示(副作用等),起到輔助診斷的作用;醫(yī)院在云平臺(tái)的支持下可建立多元數(shù)據(jù)庫(kù),進(jìn)一步降低成本。

影像輔助診斷的主要技術(shù)原理主要分為兩部分:圖像識(shí)別和深度學(xué)習(xí),首先計(jì)算機(jī)對(duì)搜集到的圖像進(jìn)行預(yù)處理、分割、匹配判斷和特征提取一系列的操作,隨后進(jìn)行深度學(xué)習(xí),從患者病歷庫(kù)以及其他醫(yī)療數(shù)據(jù)庫(kù)搜索數(shù)據(jù),最終提供診斷建議。目前來(lái)說(shuō)影像輔助診斷的準(zhǔn)確率較精準(zhǔn),相較于放射醫(yī)師,對(duì)臨床結(jié)節(jié)或肺癌診斷的準(zhǔn)確率高出50%,可以檢測(cè)整個(gè)X光片面積0.01%的細(xì)微骨折。

診療結(jié)果預(yù)測(cè)——提早預(yù)估風(fēng)險(xiǎn)

人工智能的輔助診斷并不僅僅體現(xiàn)在醫(yī)療影像方面,在診療結(jié)果的把控方面也已經(jīng)有所應(yīng)用。

AI能夠建立包括手術(shù)、麻醉、體外循環(huán)等在內(nèi)的一套最佳的治療方案,還能夠預(yù)測(cè)病人術(shù)后的出血風(fēng)險(xiǎn)、出血量、在 ICU 的停留時(shí)間、以及術(shù)后綜合癥的風(fēng)險(xiǎn)等。當(dāng)醫(yī)生需要更改手術(shù)方案的參數(shù)時(shí),系統(tǒng)還能自動(dòng)計(jì)算參數(shù)修改后這幾個(gè)風(fēng)險(xiǎn)因素的變化。

AI與藥物開(kāi)發(fā)

近期我國(guó)藥政頻發(fā)使創(chuàng)新藥物研發(fā)獲諸多“政策紅利”,目前我國(guó)新藥研發(fā)面臨研發(fā)時(shí)間、成本及資金三座大山。人工智能助力藥物研發(fā),可大大縮短藥物研發(fā)時(shí)間、提高研發(fā)效率并控制研發(fā)成本。

人工智能助力藥物研主要體現(xiàn)在臨床前和臨床研究上。在臨床前通過(guò)深度學(xué)習(xí),提高藥物篩選效率并優(yōu)化其構(gòu)效關(guān)系,在臨床研究過(guò)程中結(jié)合醫(yī)院數(shù)據(jù),可快速找到符合條件的受試病人。

人工智能在臨床醫(yī)療診斷中的應(yīng)用

人工智能在臨床醫(yī)療診斷中常用于醫(yī)療專家系統(tǒng)[6],主要是運(yùn)用專家系統(tǒng)的設(shè)計(jì)原理與方法模擬醫(yī)學(xué)專家診斷、治療疾病的思維過(guò)程編制的計(jì)算機(jī)程序,它可以幫助醫(yī)生解決復(fù)雜的醫(yī)學(xué)問(wèn)題,作為醫(yī)生診斷的輔助工具,繼承和發(fā)揚(yáng)醫(yī)學(xué)專家的寶貴理論及豐富的臨床經(jīng)驗(yàn)。

概括來(lái)說(shuō),人工智能在醫(yī)療領(lǐng)域有如下作用:

1、可以為醫(yī)生提供完整和有效的信息,從而為疾病的診斷和治療提供科學(xué)、可靠的依據(jù)。

2、可以極大地提高醫(yī)學(xué)數(shù)據(jù)的測(cè)定和分析過(guò)程的自動(dòng)化程度,從而大大提高工作速度,減輕人的工作強(qiáng)度,并減少主觀隨意性。

3、可以集中專家的知識(shí),輔助醫(yī)生做出更為可靠和正確的診斷;隨著病例的增多,還可以豐富系統(tǒng)的知識(shí),自動(dòng)地或在人工干預(yù)下進(jìn)行知識(shí)的積累和分析,提高醫(yī)療水平。

可以從大規(guī)模的醫(yī)學(xué)歷史數(shù)據(jù)中發(fā)現(xiàn)規(guī)律和知識(shí),從而為未來(lái)疾病防控提供決策支持。

人工智能醫(yī)療智能診斷系統(tǒng)中的應(yīng)用

人工神經(jīng)網(wǎng)絡(luò)理論的發(fā)展為醫(yī)療智能診斷系統(tǒng)提供了一條新的有效途徑。基于這一思路,人們將人工神經(jīng)網(wǎng)絡(luò)與專家系統(tǒng)進(jìn)行了有效的結(jié)合,建立了人工神經(jīng)網(wǎng)絡(luò)式的醫(yī)療智能診斷系統(tǒng)。該系統(tǒng)知識(shí)獲取的特點(diǎn)是向現(xiàn)實(shí)世界學(xué)習(xí),它是將大量的樣本(病例),通過(guò)特定的學(xué)習(xí)算法得到網(wǎng)絡(luò)各種神經(jīng)元之間的連接權(quán)而獲得的。這種方式與人腦存貯知識(shí)十分相似,具有聯(lián)想、并行處理和容錯(cuò)的功能,可以將醫(yī)療智能診斷系統(tǒng)提高到一個(gè)新的水平。然而,目前用這種方法建立醫(yī)療診斷系統(tǒng)的成果仍是有限的。這主要是由于建立人工神經(jīng)網(wǎng)絡(luò)模型所需要的算法在解決規(guī)模稍大、特征較多的疾病診斷問(wèn)題時(shí),往往學(xué)習(xí)算法不能計(jì)算出正確的結(jié)果。經(jīng)研究,本文提出了一種“非梯度學(xué)習(xí)算法”,即單參數(shù)動(dòng)態(tài)搜索算法(簡(jiǎn)稱為SPDS算法)。這種學(xué)習(xí)算法對(duì)于規(guī)模稍大、特征較多的實(shí)際問(wèn)題可上百倍地快于以往的學(xué)習(xí)算法。在一些實(shí)際問(wèn)題中,該算法已見(jiàn)到明顯效果,并開(kāi)始引起人們的重視。相信將這種學(xué)習(xí)算法用于醫(yī)療智能診斷系統(tǒng),必然會(huì)帶來(lái)新的突破。

人工神經(jīng)網(wǎng)絡(luò)在中醫(yī)學(xué)中的應(yīng)用

中醫(yī)學(xué)辨證施治過(guò)程,實(shí)質(zhì)上是對(duì)一大堆數(shù)據(jù)信息作出處理,提取規(guī)律的過(guò)程。人工神經(jīng)網(wǎng)絡(luò)有較好獲得數(shù)據(jù)規(guī)律的能力,應(yīng)用于中醫(yī)學(xué)具有可行性。

中醫(yī)學(xué)中的“辨證論治”中的“證”具有模糊性、不確定性的特點(diǎn),主觀性較強(qiáng),所以中醫(yī)的診斷和治療與醫(yī)師的經(jīng)驗(yàn)、水平有較大關(guān)系,多年來(lái)對(duì)“證”的研究思路和方法主要集中在實(shí)驗(yàn)研究、臨床觀察、文章整理、經(jīng)驗(yàn)總結(jié)上。 人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用可以替代部分“辨證”過(guò)程,選擇適當(dāng)?shù)闹嗅t(yī)癥狀作為基本輸入和適當(dāng)?shù)娜斯ど窠?jīng)網(wǎng)絡(luò)模型,人工神經(jīng)網(wǎng)絡(luò)能夠根據(jù)已有的學(xué)習(xí)“經(jīng)驗(yàn)”進(jìn)行分析,綜合提出中醫(yī)診斷。人工神經(jīng)網(wǎng)絡(luò)由神經(jīng)元結(jié)構(gòu)模型、網(wǎng)絡(luò)連接模型、網(wǎng)絡(luò)學(xué)習(xí)算法等幾個(gè)要素組成,是具有某些智能***功能的系統(tǒng)。 從網(wǎng)絡(luò)結(jié)構(gòu)劃分,人工神經(jīng)網(wǎng)絡(luò)有許多不同的種類,如感知器、BP 網(wǎng)絡(luò)、Hopfield 網(wǎng)絡(luò)等 ,其中 BP 網(wǎng)絡(luò)是目前應(yīng)用最為廣泛的神經(jīng)網(wǎng)絡(luò)之一。 BP 網(wǎng)絡(luò)是一種前向網(wǎng)絡(luò),通過(guò)網(wǎng)絡(luò)的結(jié)構(gòu)與權(quán)值表達(dá)復(fù)雜的非線性 I/O 映射關(guān)系, 同時(shí) BP 網(wǎng)絡(luò)具有優(yōu)良的自學(xué)習(xí)功能,可以通過(guò)誤差的反向傳播方法,對(duì)照已知樣本進(jìn)行反復(fù)訓(xùn)練,調(diào)整網(wǎng)絡(luò)的權(quán)值,直至網(wǎng)絡(luò)的 I/O 關(guān)系在某一訓(xùn)練指標(biāo)下最接近樣本。

基于人工神經(jīng)網(wǎng)絡(luò)技術(shù)的專家系統(tǒng)

基于人工神經(jīng)網(wǎng)絡(luò)技術(shù)的專家系統(tǒng)在建造知識(shí)庫(kù)時(shí)[16],首先根據(jù)應(yīng)用來(lái)選擇和確定神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),再選擇學(xué)習(xí)算法,對(duì)與求解問(wèn)題有關(guān)的樣本進(jìn)行學(xué)習(xí),以調(diào)整系統(tǒng)的連接權(quán)值,完成知識(shí)自動(dòng)獲取和分布式的存儲(chǔ),構(gòu)建系統(tǒng)的知識(shí)庫(kù)。 然而若輸入的信息不十分明確導(dǎo)致系統(tǒng)性能降低, 這必然也會(huì)降低診斷的準(zhǔn)確性。 而基于神經(jīng)系統(tǒng)結(jié)構(gòu)和功能模擬基礎(chǔ)上的神經(jīng)網(wǎng)絡(luò),可以通過(guò)對(duì)實(shí)例的不斷學(xué)習(xí),自動(dòng)獲取知識(shí),并將知識(shí)分布存儲(chǔ)于神經(jīng)網(wǎng)絡(luò)中, 通過(guò)學(xué)習(xí)不斷提高神經(jīng)網(wǎng)絡(luò)中神經(jīng)元之間連接權(quán)值的調(diào)整過(guò)程。 系統(tǒng)將根據(jù)神經(jīng)網(wǎng)絡(luò)當(dāng)前所接收到的實(shí)例問(wèn)題的相似性確定輸出。 當(dāng)環(huán)境信息不十分完全時(shí),仍然可以通過(guò)計(jì)算得出一個(gè)比較滿意的解答。

目前,已建立了心肌梗塞、心絞痛疾病及其并發(fā)癥的醫(yī)療智能診斷系統(tǒng)。根據(jù)醫(yī)生的建議,系統(tǒng)提供了三個(gè)人機(jī)對(duì)話界面:

1、錄入主訴、病史和臨床癥狀。包括性別、年齡、發(fā)病時(shí)間、前驅(qū)癥狀、病史、消化系統(tǒng)癥狀、呼吸系統(tǒng)癥狀等60余項(xiàng)。

2、錄入體征。查體征所能得到的信息,包括心界、心音、磨擦音、濕羅音等20余項(xiàng)。

3、錄入輔助檢查結(jié)果。包括心電圖、心肌酶、心臟彩超、漂浮導(dǎo)管等心內(nèi)科輔助檢查手段的結(jié)果300余項(xiàng)。

人工智能技術(shù)在醫(yī)學(xué)影像診斷中的應(yīng)用

盡管人工智能技術(shù)可應(yīng)用于臨床領(lǐng)域中的各個(gè)方面(組織病理學(xué)、傳染病學(xué)、內(nèi)科學(xué)、精神病學(xué)等),但在醫(yī)學(xué)影像領(lǐng)域中,放射科專家大部分情況下還是主要依賴于臨床醫(yī)生建立起來(lái)的主觀印象。 制約影像專家系統(tǒng)發(fā)展的難點(diǎn)在于高級(jí)視覺(jué)系統(tǒng)本身,如從醫(yī)學(xué)掃描器上獲得的數(shù)據(jù)可能是噪聲或者是模糊的,而代表解剖結(jié)構(gòu)上的或功能上的分區(qū)常常是復(fù)雜的和不確定的,當(dāng)處理這些被稱作為證據(jù)不確定的非精確信息時(shí),大大增加了專家系統(tǒng)設(shè)計(jì)的復(fù)雜性。

目前,隨著微電子技術(shù)和計(jì)算機(jī)技術(shù)的快速發(fā)展,很多制約醫(yī)學(xué)專家系統(tǒng)發(fā)展的因素也相繼得到解決,應(yīng)用到醫(yī)學(xué)影像學(xué)方面的初級(jí)特征提取技術(shù)及成像設(shè)備(CT,MRI,PET,X 線,超聲等 )得到廣泛應(yīng)用和研究 。 例如,在乳房 X 線照片中自動(dòng)檢測(cè)叢生的小鈣化點(diǎn)的線性濾波和閾值匹配方法,已經(jīng)被證實(shí)可提高放射學(xué)專家的診斷精確率。 其他應(yīng)用,如肺部腫瘤的計(jì)算機(jī)檢測(cè),心臟大小的計(jì)算分析,胸部放射片上腔隙性疾病的定性,血管角質(zhì)瘤影像的自動(dòng)跟蹤,紋理分析應(yīng)用到超聲掃描,X 射線照相術(shù)和 CT 圖像等已經(jīng)在一些實(shí)例中較成功地得到證明。

人工智能在醫(yī)療記錄的應(yīng)用

醫(yī)學(xué)的任何表達(dá)包括實(shí)驗(yàn)室數(shù)據(jù),都可以或者都必須轉(zhuǎn)換為描述語(yǔ)言,因?yàn)獒t(yī)學(xué)的任何判斷和結(jié)論都必須人的直接參與,沒(méi)有任何一種單純的物理信號(hào)或數(shù)字信息可以完整描述人。醫(yī)學(xué)的描述性特點(diǎn)也使醫(yī)學(xué)的意義更依賴于給患者的醫(yī)療記錄,沒(méi)有一種記錄能像醫(yī)療記錄那樣把人、學(xué)術(shù)、生活、俗務(wù)、法律、科學(xué)等聯(lián)系得更緊密。所以醫(yī)療記錄的繁雜也托負(fù)著眾望,日益艱巨起來(lái)。

后來(lái)隨著電子文本記錄法的出現(xiàn),推進(jìn)了工作方式乃至觀察方式發(fā)生改變。上世紀(jì)70年代開(kāi)發(fā)的醫(yī)學(xué)信息系統(tǒng)RMIS,它使用了一種就醫(yī)表格:其右方是患者的主訴、病史描述等,采用文本處理方式,都是先用手寫(xiě),再由專人輸入電腦;其左上方是診斷列表,列出醫(yī)生診斷的疾病名;左下方是結(jié)構(gòu)化數(shù)據(jù)列表,記錄重要生理參數(shù)和檢驗(yàn)參數(shù)等;RMIS至今還有人使用。近些年SDE有電子版面世,它發(fā)揚(yáng)表格結(jié)構(gòu)輸入法的優(yōu)點(diǎn),不但能用直接模型處理類似試驗(yàn)設(shè)備所產(chǎn)生的簡(jiǎn)單數(shù)據(jù),而且能用間接模型處理有專業(yè)依賴性的復(fù)雜數(shù)據(jù)。SDE的結(jié)構(gòu)化數(shù)據(jù)來(lái)源于詞典,它的知識(shí)編輯器可以起到規(guī)范輸入詞匯的作用。這種特征是電子病歷輸入方法的一種進(jìn)步,在中國(guó),有中國(guó)特色的文本模板編輯法或半結(jié)構(gòu)化的摘字換句法,都展現(xiàn)了醫(yī)療記錄向醫(yī)學(xué)人工智能的規(guī)范化方向合流的趨勢(shì)。將電子病歷系統(tǒng)嵌套在醫(yī)學(xué)知識(shí)決策系統(tǒng)之中;再將知識(shí)決策系統(tǒng)嵌套在整體的智能化數(shù)字醫(yī)院體系之中,醫(yī)療決策和醫(yī)療記錄熔為一爐,既完成對(duì)患者的醫(yī)療全過(guò)程本身,又完成醫(yī)療過(guò)程在醫(yī)院中充當(dāng)?shù)慕巧>唧w的思路是:醫(yī)生應(yīng)用基于知識(shí)庫(kù)的智能化診療平臺(tái)為患者看病,醫(yī)生看病的軌跡被自動(dòng)記錄下來(lái),成為電子病歷。形成電子病歷的技術(shù)過(guò)程非常簡(jiǎn)單,電子病歷的內(nèi)容有賴于知識(shí)庫(kù);人工智能的看病模型非常簡(jiǎn)單,即計(jì)算機(jī)+知識(shí)庫(kù),把智能化的技術(shù)難點(diǎn)轉(zhuǎn)嫁給知識(shí)表達(dá)。

人工智能在醫(yī)療領(lǐng)域的應(yīng)用前景

醫(yī)學(xué)人工智能是人工智能發(fā)展出來(lái)的一大分支,它將為醫(yī)學(xué)診療問(wèn)題提供解決方案,研究最多成果最顯著的是醫(yī)學(xué)專家系統(tǒng)。醫(yī)學(xué)專家系統(tǒng)是一個(gè)具有大量專門(mén)知識(shí)與經(jīng)驗(yàn)的程序系統(tǒng),它應(yīng)人工智能技術(shù),根據(jù)某個(gè)領(lǐng)域一個(gè)或多個(gè)人類專家提供的知識(shí)和經(jīng)驗(yàn)進(jìn)行推理和判斷,模擬人類專家的決策過(guò)程,以解決那些需要專家決定的復(fù)雜問(wèn)題。專家系統(tǒng)是目前人工智能中最活躍、最有成效的一個(gè)研究領(lǐng)域。

隨著現(xiàn)代科學(xué)技術(shù)的發(fā)展,未來(lái)的醫(yī)學(xué)專家系統(tǒng)發(fā)展趨勢(shì)可能會(huì)具備以下幾個(gè)特點(diǎn):

1、醫(yī)學(xué)專家系統(tǒng)應(yīng)以解決一些特殊的問(wèn)題為目的。這些特殊的問(wèn)題在計(jì)算機(jī)視覺(jué)和人工智能方面沒(méi)有被研究過(guò)。人類對(duì)可視圖案的認(rèn)識(shí)不同于常規(guī)的推理,并且代表明確的領(lǐng)域知識(shí)常常在視覺(jué)認(rèn)識(shí)過(guò)程中下意識(shí)地忽略了被用到的那些因素。

2、醫(yī)學(xué)專家系統(tǒng)的模型可能會(huì)是以多種智能技術(shù)為基礎(chǔ),以并行處理方式、自學(xué)能力、記憶功能、預(yù)測(cè)事件發(fā)展能力為目的。目前發(fā)展起來(lái)的遺傳算法、模糊算法、粗糙集理論等非線性數(shù)學(xué)方法,有可能會(huì)跟人工神經(jīng)網(wǎng)絡(luò)技術(shù)、人工智能技術(shù)綜合起來(lái)構(gòu)造成新的醫(yī)學(xué)專家系統(tǒng)模型。這些技術(shù)必將會(huì)推動(dòng)醫(yī)學(xué)專家系統(tǒng)一場(chǎng)新的革命,因?yàn)槿斯ど窠?jīng)網(wǎng)絡(luò)技術(shù)具有強(qiáng)大的自適應(yīng)、自處理、自學(xué)習(xí)、記憶功能等,如Yu ji等人基于螺旋CT圖像的冠狀動(dòng)脈鈣化點(diǎn)的診斷系統(tǒng),就是神經(jīng)網(wǎng)絡(luò)在醫(yī)學(xué)專家系統(tǒng)中應(yīng)用的一個(gè)很好例子。

人工智能是一門(mén)通過(guò)計(jì)算過(guò)程力圖理解和模仿智能行為的學(xué)科。可實(shí)現(xiàn)判斷、推理、證明、識(shí)別、感知、理解、通信、設(shè)計(jì)、思考、規(guī)劃、學(xué)習(xí)和問(wèn)題求解等思維活動(dòng)的自動(dòng)化。半個(gè)世紀(jì)以來(lái),人工智能的飛速發(fā)展令人瞠目。醫(yī)學(xué)人工智能,以計(jì)算機(jī)為工具,最終目標(biāo)直指疾病。實(shí)現(xiàn)目標(biāo)的邊界條件是:不改變醫(yī)學(xué)的學(xué)術(shù)現(xiàn)狀,不企圖取代醫(yī)生。主要方法是:抽象醫(yī)學(xué)思維,并將其模型化,以利計(jì)算機(jī)實(shí)現(xiàn)。中間目標(biāo)是:搭建知識(shí)平臺(tái),運(yùn)用智能方法,輔助醫(yī)務(wù)人員擴(kuò)大視界,更好地發(fā)揮聰明才智。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 醫(yī)療電子
    +關(guān)注

    關(guān)注

    30

    文章

    1374

    瀏覽量

    91113
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    34691

    瀏覽量

    276649

原文標(biāo)題:AI醫(yī)生來(lái)了,人類醫(yī)生真的要失業(yè)嗎?

文章出處:【微信號(hào):WW_CGQJS,微信公眾號(hào):傳感器技術(shù)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    AI時(shí)代:不可替代的“人類+”職業(yè)技能

    當(dāng)生成式人工智能能夠撰寫(xiě)報(bào)告、編寫(xiě)代碼甚至設(shè)計(jì)產(chǎn)品時(shí),一個(gè)根本性的焦慮開(kāi)始蔓延:人類工作者是否正在被算法取代?這個(gè)問(wèn)題的答案或許比簡(jiǎn)單的“是”或“否”更為復(fù)雜——AI確實(shí)在重塑職業(yè)版圖,但真正的挑戰(zhàn)
    的頭像 發(fā)表于 05-20 16:13 ?169次閱讀

    AI智能制造系統(tǒng)怎么用

    在全球制造業(yè)加速轉(zhuǎn)型的當(dāng)下,AI智能制造成為推動(dòng)行業(yè)發(fā)展的重要力量。它融合了先進(jìn)的人工智能技術(shù)與傳統(tǒng)制造流程,為企業(yè)帶來(lái)了提高生產(chǎn)效率、優(yōu)化產(chǎn)品質(zhì)量、降低成本等諸多優(yōu)勢(shì)。然而,對(duì)于許多企業(yè)而言
    的頭像 發(fā)表于 03-24 09:58 ?373次閱讀
    <b class='flag-5'>AI</b>智能制造系統(tǒng)<b class='flag-5'>要</b>怎么用

    stm32h750 cube aiai_network_create_and_init了,怎么解決?

    進(jìn)去發(fā)現(xiàn)是卡在ai_platform_network_create,CRC也開(kāi)了,瘋掉
    發(fā)表于 03-14 07:22

    10分鐘快速打造爆款AI硬件!涂鴉產(chǎn)品AI功能和智能體開(kāi)發(fā)平臺(tái)重磅上新

    在智能化浪潮的推動(dòng)下,AI與智能設(shè)備的深度融合,不僅重塑了人類的生活方式,更為開(kāi)發(fā)者帶來(lái)了無(wú)限想象空間。例如AI陪伴機(jī)器人、AI玩具、
    的頭像 發(fā)表于 03-06 18:59 ?764次閱讀
    10分鐘快速打造爆款<b class='flag-5'>AI</b>硬件!涂鴉產(chǎn)品<b class='flag-5'>AI</b>功能和智能體開(kāi)發(fā)平臺(tái)重磅上新

    AI的“隨機(jī)性”挑戰(zhàn):它們比人類更“不隨機(jī)”?

    你有沒(méi)有想過(guò),人類真的能做出完全隨機(jī)的選擇嗎?答案可能出乎你的意料。事實(shí)上,人類天生就不擅長(zhǎng)“隨機(jī)”,我們總能在看似無(wú)序的事物中發(fā)現(xiàn)規(guī)律,甚至在本該隨機(jī)的場(chǎng)景中創(chuàng)造出模式。這種“偽隨機(jī)”行為,其實(shí)是
    的頭像 發(fā)表于 02-20 13:11 ?590次閱讀
    <b class='flag-5'>AI</b>的“隨機(jī)性”挑戰(zhàn):它們比<b class='flag-5'>人類</b>更“不隨機(jī)”?

    AI開(kāi)發(fā)板】正點(diǎn)原子K230D BOX開(kāi)發(fā)板來(lái)了!一款性能強(qiáng)悍且小巧便攜的AI開(kāi)發(fā)板!

    AI開(kāi)發(fā)板】正點(diǎn)原子K230D BOX開(kāi)發(fā)板來(lái)了!一款性能強(qiáng)悍且小巧便攜的AI開(kāi)發(fā)板! 正點(diǎn)原子K230D BOX是一款性能強(qiáng)悍且小巧便攜的AI視覺(jué)開(kāi)發(fā)套件,其內(nèi)嵌的正點(diǎn)原子K2
    發(fā)表于 02-18 16:56

    AI賦能邊緣網(wǎng)關(guān):開(kāi)啟智能時(shí)代的新藍(lán)海

    。這一變革不僅帶來(lái)了技術(shù)架構(gòu)的革新,更為產(chǎn)業(yè)發(fā)展開(kāi)辟了新的增長(zhǎng)空間。 傳統(tǒng)邊緣網(wǎng)關(guān)受限于計(jì)算能力和算法支持,往往只能完成數(shù)據(jù)采集和簡(jiǎn)單處理,大量原始數(shù)據(jù)需要回傳云端處理,導(dǎo)致響應(yīng)延遲和帶寬壓力。AI技術(shù)
    發(fā)表于 02-15 11:41

    What? 被DeepSeek搶飯碗?電子工程師失業(yè)

    火爆的DeepSeek今年春節(jié)假期,DeepSeek火爆全網(wǎng),再次掀起全球?qū)?b class='flag-5'>AI的熱潮,幾乎全網(wǎng)都在討論和使用DeepSeek,在人們?yōu)?b class='flag-5'>AI技術(shù)帶來(lái)的“AI自由”歡呼雀躍之際,也有人開(kāi)始擔(dān)憂A
    的頭像 發(fā)表于 02-10 15:34 ?578次閱讀
    What? 被DeepSeek搶飯碗?電子工程師<b class='flag-5'>要</b><b class='flag-5'>失業(yè)</b>?

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.55】AI Agent應(yīng)用與項(xiàng)目實(shí)戰(zhàn)

    地看待其發(fā)展,它已經(jīng)帶來(lái)了倫理和道德問(wèn)題: 如何保證算法的公平性和透明度? 如何在智能與隱私之間找到平衡? 人類如何在AI Agent主導(dǎo)的未來(lái)中保持主體性? 以及如何平衡技術(shù)進(jìn)步與社會(huì)穩(wěn)定,確保
    發(fā)表于 01-13 11:04

    馬斯克預(yù)言:AI將全面超越人類智力

    近日,科技巨頭馬斯克作出了一個(gè)關(guān)于人工智能(AI)的大膽預(yù)測(cè)。他斷言,AI的發(fā)展速度將超乎人類的想象,并將在不久的將來(lái)全面超越人類的智力。 馬斯克在X平臺(tái)上明確表示,
    的頭像 發(fā)表于 12-28 14:23 ?713次閱讀

    AI智能體逼真模擬人類行為

    近日,據(jù)外媒最新報(bào)道,斯坦福大學(xué)、華盛頓大學(xué)與Google DeepMind的科研團(tuán)隊(duì)攜手合作,成功開(kāi)發(fā)出一種能夠高度逼真模擬人類行為的AI智能體。 該智能體的構(gòu)建得益于研究團(tuán)隊(duì)將詳細(xì)的訪談?dòng)涗?/div>
    的頭像 發(fā)表于 11-26 10:24 ?812次閱讀

    芯片工程師失業(yè)?谷歌Alphachip入局AI設(shè)計(jì)

    行業(yè)芯事行業(yè)資訊
    電子發(fā)燒友網(wǎng)官方
    發(fā)布于 :2024年11月07日 11:43:43

    平衡創(chuàng)新與倫理:AI時(shí)代的隱私保護(hù)和算法公平

    在人工智能技術(shù)飛速發(fā)展的今天,它不僅帶來(lái)了前所未有的便利和效率,也暴露出了一系列倫理和隱私問(wèn)題。從數(shù)據(jù)隱私侵犯到“信息繭房”的形成,再到“大數(shù)據(jù)殺熟”、AI歧視和深度偽造技術(shù)的威脅,AI的應(yīng)用似乎
    發(fā)表于 07-16 15:07

    ai大模的應(yīng)用前景是什么?

    人工智能(AI)大模型的應(yīng)用前景非常廣泛,涉及到各個(gè)行業(yè)和領(lǐng)域。以下是對(duì)AI大模型應(yīng)用前景的介紹: 醫(yī)療健康領(lǐng)域 AI大模型在醫(yī)療健康領(lǐng)域的應(yīng)用前景非常廣闊。首先,AI大模型可以輔助
    的頭像 發(fā)表于 07-16 10:13 ?1038次閱讀
    主站蜘蛛池模板: 国产婷婷综合在线精品尤物 | 亚洲欧美在线播放 | 亚洲第一狼人社区 | 在线视频一区二区三区四区 | 欧亚精品卡一卡二卡三 | 美女网站一区二区三区 | 女的扒开尿口让男人桶爽 | 欧洲乱码专区一区二区三区四区 | 91久娇草 | 黄色网页在线播放 | 男人日女人视频免费看 | 高清不卡一区 | 天天摸天天碰成人免费视频 | 久操视频免费看 | 欧美日韩中文字幕 | 日本www在线观看 | 国内真实实拍伦视频在线观看 | 国产男女怕怕怕免费视频 | 免费国产综合视频在线看 | 色综合色综合色综合网址 | 成人三级网址 | 亚洲久久久 | 乱色伦肉小说 | 美女张开腿露出尿口让男人桶 | 最刺激黄a大片免费网站 | 在线看片你懂得 | 五月亭亭激情五月 | 久久综合性 | 最好免费高清视频观看韩国 | 国产深夜福利在线观看网站 | 在线播放你懂得 | 夜夜爽夜夜爱 | 国产aaaaaaa毛片 | 奇米影视一区 | 亚洲综合久久久久久888 | 怡红院免费va男人的天堂 | 免费又黄又硬又大爽日本 | 亚洲一区二区三区中文字幕5566 | 国产片翁熄系列乱在线视频 | 性欧美性| 欧美色图一区 |