便攜產(chǎn)品充電電路旁路元件的選擇
手機(jī)、數(shù)碼相機(jī)、數(shù)碼攝像機(jī)、DVD播放器、MP3播放器和PDA等便攜式產(chǎn)品的充電電路設(shè)計(jì)可以采用四種不同的拓?fù)浣Y(jié)構(gòu)。四種解決方案都使用帶外部旁路元件(見(jiàn)圖1)的控制PMU(電源管理單元)。本文將探討外部旁路元件的組成,并將討論各種設(shè)計(jì)的優(yōu)點(diǎn)和缺點(diǎn)。
圖1 帶外部旁路元件的解決方案
選擇旁路元件取決于不同因素和它們各自對(duì)設(shè)計(jì)的重要性,包括開(kāi)關(guān)效率、功率損耗、散熱、驅(qū)動(dòng)電路配置、PMU配置、PCB占位面積、封裝高度、ESD 容差和價(jià)格。充電電路額定電流小于600mA時(shí),旁路元件經(jīng)常集成在PMU中,完全不需要外部元件,因此,本文著重于討論額定電流為1A的便攜式產(chǎn)品的充電電路。旁路元件的四種不同的拓?fù)浣Y(jié)構(gòu)如圖2所示。
圖2 旁路元件的四種不同的拓補(bǔ)結(jié)構(gòu)
開(kāi)關(guān)效率對(duì)于電路很重要,其中旁路元件的開(kāi)關(guān)時(shí)間引起的損耗將影響電池壽命。
正在推出的開(kāi)關(guān)充電電路在給定面積中的功耗比標(biāo)準(zhǔn)線性穩(wěn)壓器少。拓?fù)浣Y(jié)構(gòu)A、B和D適用于這種情況,設(shè)計(jì)人員在選擇時(shí)可以著重考慮MOSFET的開(kāi)關(guān)時(shí)間。
導(dǎo)電功耗是影響電路效率的重要因素。旁路元件上的壓降越小,功耗就越小。拓?fù)浣Y(jié)構(gòu)A和B都含有肖特基二極管,其上的壓降相對(duì)較高,因此功耗也較大。拓?fù)浣Y(jié)構(gòu)C是一個(gè)低VCEsat的雙極晶體管(BJT),其中設(shè)計(jì)人員必須考慮驅(qū)動(dòng)電流損耗以及BJT上的損耗。拓?fù)浣Y(jié)構(gòu)D使用了兩個(gè)串聯(lián)現(xiàn)代溝道(modern trench)MOSFET,其中兩個(gè)元件都增加了損耗。背靠背布置的小RDS(ON) MOSFET可提供極小的導(dǎo)通功耗。
散熱在線性穩(wěn)壓充電電路中起著重要作用。1A的線性穩(wěn)壓使這些超小的封裝產(chǎn)生大量的熱量。散熱方法之一是使用單獨(dú)封裝的元件,讓不同元件在PCB上均勻散熱。替代方案是將幾個(gè)元件封裝在一起,設(shè)計(jì)時(shí)需要著重考慮的是封裝熱阻。WDFN 2mm×2mm封裝中的BJT和MOSFET新產(chǎn)品的特征是墊盤(pán)暴露在下面,明顯降低了熱阻。使用拓?fù)浣Y(jié)構(gòu)C(BJT)時(shí),設(shè)計(jì)人員需要考慮潛在的熱量流失。
驅(qū)動(dòng)電路配置會(huì)受PMU設(shè)計(jì)影響,大多數(shù)PMU會(huì)提供為BJT或MOSFET設(shè)計(jì)的驅(qū)動(dòng)電路。在分立設(shè)計(jì)中,BJT會(huì)需要能被吸收或耗散的連續(xù)驅(qū)動(dòng)電流。增益相對(duì)高的BJT需要更小的驅(qū)動(dòng)電流。MOSFET需要高柵極電壓以得到低導(dǎo)通損耗。對(duì)于P溝道器件,可能需要增加一個(gè)電平偏移,而N溝道器件可能需要增加一個(gè)電荷泵。
PMU配置可能使用旁路元件完成充電以外的功能。拓?fù)浣Y(jié)構(gòu)D中,旁路元件用作開(kāi)關(guān),讓電流從充電電池返回到另一個(gè)元件或電路。這種配置經(jīng)常用于筆記本電腦中的可拆卸電池組上,其中相同的電池組連接器用于電池充電并對(duì)筆記本電腦供電。而且,在電話中,電池可用于驅(qū)動(dòng)外部揚(yáng)聲器、MP3播放器、藍(lán)牙等。
由于設(shè)計(jì)人員要不斷滿足更新的挑戰(zhàn),在更小的空間中容納更多的元件,因此,PCB占位面積和封裝高度也起著重要的作用。WDFN(0.75mm)或 UDFN封裝(0.55mm)的特征是外形極薄、占位面積小且性能高,它們是今天便攜式電子設(shè)備的中常選用的器件封裝方式。如果封裝高度和占位面積不重要,那么設(shè)計(jì)人員可以從所有四種拓?fù)浣Y(jié)構(gòu)選擇多樣化的封裝形式,其中,拓?fù)浣Y(jié)構(gòu)A需要挑選并放置另一額外元件。
隨著便攜式產(chǎn)品越來(lái)越小,ESD容差也變得越來(lái)越重要。鄰近或在連接器上的ESD電荷變得越來(lái)越重要。因?yàn)锽JT(HB>8000V)的結(jié)構(gòu),其抗ESD性能明顯比MOSFET(HB>300V)好,而且不需要外部ESD保護(hù),因此減少了元件數(shù)量。
價(jià)格始終是設(shè)計(jì)人員需要考慮的一個(gè)重要因素。封裝形式越老、封裝尺寸越大,價(jià)格就越低。比如,SOT23(3 mm×3mm)是業(yè)內(nèi)成本最低的封裝之一。至于其他小型封裝,如ChipFET(3mm×2mm)或最新的WDFN(2mm×2mm)封裝,尺寸更小、熱阻更低,但是價(jià)格較高。在體積較大、形式較老的封裝中使用拓?fù)浣Y(jié)構(gòu)A將是性價(jià)比最高的解決方案。
結(jié)論
新產(chǎn)品推出時(shí)間越來(lái)越短,使得設(shè)計(jì)工程師不得不重用前一充電電路的設(shè)計(jì),而這種做法常常使制造商陷入更被動(dòng)的局面,因?yàn)樗麄兊母?jìng)爭(zhēng)對(duì)手正在評(píng)估最新的技術(shù)并應(yīng)用這些新解決方案以獲得明顯的性能優(yōu)勢(shì)。市場(chǎng)需要更小、更薄、更快、更耐熱和更可靠的產(chǎn)品,在變攜產(chǎn)品的充電電路設(shè)計(jì)上,也是同樣,需要設(shè)計(jì)工程師考慮多方面的因素,最后取得性能和價(jià)格的平衡,使自己的產(chǎn)品能接受市場(chǎng)的挑戰(zhàn)。
如何權(quán)衡充電電池與電源管理
便攜式電子設(shè)備設(shè)計(jì)人員可以選擇各種各樣的化學(xué)技術(shù)、充電器拓?fù)湟约俺潆姽芾斫鉀Q方案。選擇一款最為合適的解決方案應(yīng)該是一項(xiàng)很簡(jiǎn)單的工作,但是在大多數(shù)情況下這一過(guò)程頗為復(fù)雜。設(shè)計(jì)人員需要在性能、成本、外形尺寸以及其他關(guān)鍵要求方面找到一個(gè)最佳平衡點(diǎn)。
本文將為廣大設(shè)計(jì)人員和系統(tǒng)工程師提供一些指導(dǎo)和幫助以使得該選擇工作變得更為輕松。
以3“C”開(kāi)始實(shí)現(xiàn)充電控制
所有使用可充電電池的系統(tǒng)設(shè)計(jì)人員都需要清楚一些基礎(chǔ)設(shè)計(jì)技術(shù),以確保滿足下面三個(gè)關(guān)鍵的要求:
1、電池安全性:毋庸置疑,終端用戶安全是所有系統(tǒng)設(shè)計(jì)中最優(yōu)先考慮的問(wèn)題。大多數(shù)鋰離子(Li-Ion)電池組和鋰聚合物(Li-Pol)電池組都含有保護(hù)電子電路。然而,還有一些系統(tǒng)設(shè)計(jì)需要考慮的關(guān)鍵因素。其中包括但不局限于確保在鋰離子電池充電最后階段期間1%的穩(wěn)壓容限、安全處理深度放電電池的預(yù)處理模式、安全計(jì)時(shí)器以及電池溫度監(jiān)控。
2、電池容量:所有的電池充電解決方案都要確保在每一次和每一個(gè)充電周期都能將電池容量充至充滿狀態(tài)。過(guò)早的終止充電會(huì)導(dǎo)致電池運(yùn)行時(shí)間縮短,這是當(dāng)今高功耗的便攜式設(shè)備所不希望的。
3、電池使用壽命:遵循建議的充電算法是確保終端用戶實(shí)現(xiàn)每個(gè)電池組最多充電周期的重要一步。利用電池溫度和電壓限定每一次充電、預(yù)處理深度放電電池并避免過(guò)晚或非正常充電終止是最大化電池使用壽命所必須的一些步驟。
表1:充電控制總結(jié)。
電池化學(xué)技術(shù)的選擇
現(xiàn)在系統(tǒng)設(shè)計(jì)人員可以在多種電池化學(xué)技術(shù)中進(jìn)行選擇。設(shè)計(jì)人員通常會(huì)根據(jù)下面的一些標(biāo)準(zhǔn)進(jìn)行電池化學(xué)技術(shù)的選擇,其中包括:
· 能量密度
· 規(guī)格和外形尺寸
· 成本
· 使用模式和使用壽命
近年來(lái),盡管使用鋰離子電池和鋰聚合物電池的趨勢(shì)增強(qiáng),但是Ni電池化學(xué)技術(shù)仍然是諸多消費(fèi)類應(yīng)用一個(gè)不錯(cuò)的選項(xiàng)。
無(wú)論選擇何種電池化學(xué)技術(shù),遵循每一種電池化學(xué)技術(shù)的正確充電管理技術(shù)都是至關(guān)重要的。這些技術(shù)將確保電池在每一次和每個(gè)充電周期都能被充至最大容量,而不會(huì)降低安全性或縮短電池使用壽命。
NiCd/NIMH
在一個(gè)充電周期開(kāi)始之前,并且盡可能在開(kāi)始快速充電之前對(duì)鎳鎘(NiCd)電池和鎳氫(NiMH)電池必須要進(jìn)行檢驗(yàn)和調(diào)節(jié)。如果電池電壓或溫度超出了允許的極限是不允許進(jìn)行快速充電的。出于安全考慮,對(duì)所有“熱”電池(一般高于45℃)的充電工作都會(huì)暫時(shí)終止,直到電池冷卻到正常工作溫度范圍內(nèi)才會(huì)再次運(yùn)轉(zhuǎn)。要想處理一個(gè)“冷”電池(一般低于10℃)或過(guò)度放電的電池(每節(jié)電池通常低于1V),需要施加一個(gè)溫和的點(diǎn)滴式電流。
當(dāng)電池溫度和電壓正確時(shí)快速充電開(kāi)始。通常用1℃或更低的恒定電流對(duì)NiMH電池進(jìn)行充電。一些NiCd電池可以用高達(dá)4C的速率進(jìn)行充電。采用適當(dāng)?shù)某潆娊K止來(lái)避免有害的過(guò)充電。
就鎳基可充電電池而言,快速充電終止基于電壓或溫度。如圖1所示,典型的電壓終止方法是峰值電壓探測(cè),在峰值時(shí)即每個(gè)電池的電壓在0~-4mV范圍內(nèi),快速充電被終止。基于溫度的快速充電終止方法是觀察電池溫度上升率T/t來(lái)探測(cè)完全充電。典型的T/t率為1℃/每分鐘。
圖1:鎳電池化學(xué)技術(shù)的充電曲線。
鋰離子/鋰聚合物電池
與NiCd電池和NiMH電池相類似,在快速充電之前盡可能檢驗(yàn)并調(diào)節(jié)鋰離子電池。驗(yàn)證和處理方法與上述使用的方法相類似。
如圖2所示,驗(yàn)證和預(yù)處理之后,先用一個(gè)1C或更低的電流對(duì)鋰離子電池進(jìn)行充電,直到電池達(dá)到其充電電壓極限為止。該充電階段通常會(huì)補(bǔ)充高達(dá)70%的電池容量。然后用一個(gè)通常為4.2V的恒定電壓對(duì)電池進(jìn)行充電。為將安全性和電池容量,必須要將充電壓穩(wěn)定在至少1%。在此充電期間,電池汲取的充電電流逐漸下降。就1C充電率而言,一旦電流電平下降到初始充電電流的10-15%以下充電通常就會(huì)終止。
圖2:鋰離子電池化學(xué)技術(shù)充電曲線。
開(kāi)關(guān)模式與線性充電拓?fù)涞膶?duì)比
傳統(tǒng)上來(lái)說(shuō),手持設(shè)備都使用線性充電拓?fù)洹T摲椒ň哂兄T多優(yōu)勢(shì):低實(shí)施成本、設(shè)計(jì)簡(jiǎn)捷以及無(wú)高頻開(kāi)關(guān)的無(wú)噪聲運(yùn)行。但是,線性拓?fù)鋾?huì)增加系統(tǒng)功耗,尤其是當(dāng)電池容量更高引起的充電率增加的時(shí)候。如果設(shè)計(jì)人員無(wú)法管理設(shè)計(jì)的散熱問(wèn)題,這就會(huì)成為一個(gè)主要缺點(diǎn)。
當(dāng)PC USB端口作為電源時(shí),則會(huì)出現(xiàn)其他一些缺點(diǎn)。當(dāng)今在許多便攜式設(shè)計(jì)上都具有USB充電選項(xiàng),并且都可提供高達(dá)500mA的充電率。就線性解決方案而言,由于其效率較低,可以從PC USB傳輸?shù)摹半娔堋绷烤捅淮蟠蠼档停瑥亩鴮?dǎo)致了充電時(shí)間過(guò)長(zhǎng)。
這就是開(kāi)關(guān)模式拓?fù)溆杏梦渲氐脑颉i_(kāi)關(guān)模式拓?fù)涞闹饕獌?yōu)勢(shì)在于效率的提高。與線性穩(wěn)壓器不同,電源開(kāi)關(guān)(或多個(gè)開(kāi)關(guān))在飽和的區(qū)域內(nèi)運(yùn)行,其大大降低了總體損耗。降壓轉(zhuǎn)換器*率損耗的主要包括開(kāi)關(guān)損耗(在電源開(kāi)關(guān)中)以及濾波電感中的DC損耗。根據(jù)設(shè)計(jì)參數(shù)的不同,在這些應(yīng)用中出現(xiàn)效率大大高于 95%的情況就不足為奇了。
當(dāng)人們聽(tīng)到開(kāi)關(guān)模式這個(gè)術(shù)語(yǔ)時(shí)大多數(shù)人都會(huì)想到大型IC、大PowerFET以及超大型電感!事實(shí)上,雖然對(duì)于處理數(shù)十安培電流的應(yīng)用而言確實(shí)是這樣,但是對(duì)于手持設(shè)備的新一代解決方案而言情況就不一樣了。新一代單體鋰離子開(kāi)關(guān)模式充電器采用了最高級(jí)別的芯片集成,高于1MHZ的使用頻率以最小化電感尺寸。圖1說(shuō)明了當(dāng)今市場(chǎng)上已開(kāi)始銷(xiāo)售的此類解決方案。該硅芯片的尺寸不到4mm2,其集成了高側(cè)和低側(cè)PowerFET。由于采用了3MHz開(kāi)關(guān)頻率,該解決方案要求一個(gè)小型1uH電感,其外形尺寸僅為:2mmx2.5mmx1.2mm(WxLxH)。
評(píng)論