TOP1 三星Artik芯片:八核處理器,可用于無人機(jī)
三星在物聯(lián)網(wǎng)世界大會上推出了新一代低功耗芯片,可以用于洗衣機(jī)和無人機(jī)等各類聯(lián)網(wǎng)設(shè)備。除此之外,該公司還公布了最新計劃,包括如何通過一個云計算平臺,從各類終端設(shè)備的芯片中匯總數(shù)據(jù),并對其加以分析。三星新推出的芯片分為三種尺寸,具備不同的處理和存儲能力以及無線電通信功能。所有芯片均嵌入了加密系統(tǒng),可以降低黑客攻擊的概率。
Artik由三星首席戰(zhàn)略官孫英權(quán)親直接掌管的戰(zhàn)略和創(chuàng)新中心研發(fā),他表示, Artik平臺包含了硬件和軟件套件,可幫助公司快速打造聯(lián)網(wǎng)設(shè)備。對此,SmartThings CEO Alex Hawkinson公開宣稱,SmartThings Open Cloud也將與Artik配合,提供資料運算以及資源整合,為開發(fā)者或公司App開發(fā)的提供便利。
尺寸最小的Artik 1芯片比瓢蟲尺寸略大,目的是供專用的傳感器中心等小型設(shè)備使用。尺寸最大的Artik 10對角線長度為2英寸(約合5厘米),希望用于家庭服務(wù)器和媒體中心。Artik 10采用1.3GHz八核處理器,擁有2GB內(nèi)存和16GB閃存。三星總裁Young Sohn表示,Artik 5可以用于無人機(jī)和相機(jī)等體積相對較小的產(chǎn)品,該芯片具備視頻編碼和解碼功能,因此也從一定程度上降低了功耗。這些芯片支持多種硬件標(biāo)準(zhǔn),包括Wi- Fi、藍(lán)牙和藍(lán)牙低功耗、ZigBee和Thread。
當(dāng)然,三星在涉足物聯(lián)網(wǎng)領(lǐng)域的雄心從去年以2億美元收購SmartThing就顯現(xiàn)出來了,我們也看到了二者合作的成績,目前已經(jīng)有 1.9 萬種設(shè)備接入了 SmartThings 的平臺。按照三星電子CEO尹富根的說法,到2017年,所有三星電視將成為物聯(lián)網(wǎng)設(shè)備,五年內(nèi)所有三星硬件設(shè)備均將支持物聯(lián)網(wǎng)。在手機(jī)方面,三星與蘋果激戰(zhàn)多年未分高下。但是,在物聯(lián)網(wǎng)這塊大蛋糕的爭搶中,三星還只是個后來者,在它面前的還有高通、英特爾兩座大山。
這些芯片已經(jīng)用于三星的移動設(shè)備,今后還將被三星消費電子部門用在電視機(jī)和電冰箱等聯(lián)網(wǎng)設(shè)備上。三星認(rèn)為,提供一套標(biāo)準(zhǔn)芯片,再輔以一套標(biāo)準(zhǔn)開發(fā)工具和標(biāo)準(zhǔn)集成平臺,將為iOS解決方案的開發(fā)提供便利,并降低成本。美國市場研究公司IDC表示,2020年激活的物聯(lián)網(wǎng)設(shè)備將達(dá)到500億臺。三星還表示,任何需要使用數(shù)十億芯片的業(yè)務(wù),三星都想涉足。
Artik平臺的推出對SmartThings有特殊意義,后者是三星18個月前收購的聯(lián)網(wǎng)家居和物聯(lián)網(wǎng)公司。SmartThings已經(jīng)擁有一套開發(fā)工具和開發(fā)者整合平臺,可以幫助開發(fā)者打造物聯(lián)網(wǎng)設(shè)備聯(lián)網(wǎng)系統(tǒng)。SmartThings CEO亞歷克斯·霍金森(Alex Hawkinson)表示,已經(jīng)有1.9萬種設(shè)備接入了SmartThings的平臺。三星正在使用SmartThings的開發(fā)云框架作為各類聯(lián)網(wǎng)設(shè)備的主要云數(shù)據(jù)集成平臺,無論這些設(shè)備使用的是Artik芯片還是其他的物聯(lián)網(wǎng)芯片。該平臺提供了SDK(軟件開發(fā)套件)幫助終端設(shè)備接入云端。Young Sohn說:“開發(fā)者可以使用這些關(guān)鍵的物聯(lián)網(wǎng)組建更快、更簡單地開發(fā)新型物聯(lián)網(wǎng)項目。”SmartThings的霍金森表示,不僅向外部開發(fā)者開放,三星內(nèi)部的電視機(jī)、電冰箱和手機(jī)團(tuán)隊也會使用相同的工具
三星曾經(jīng)表示,該公司旗下的所有產(chǎn)品都將在2020年實現(xiàn)聯(lián)網(wǎng)。新的Artik芯片將安裝在所有三星設(shè)備中,這些設(shè)備也都將接入共同的SmartThings。三星將從今天開始向開發(fā)者提供這些芯片,方便其開發(fā)物聯(lián)網(wǎng)項目。Young Sohn表示,開發(fā)軟件將集成在芯片中,并將包含接入云端所需的開放API。
更多無人機(jī)系統(tǒng)MCU資料,詳情請進(jìn)入》》》
TOP2 揭秘以mega16l為核心的無人機(jī)充放電電路
小型旋翼機(jī)器人是以模型直升機(jī)為載體, 裝備上傳感器單元, 控制單元和伺服機(jī)構(gòu)等裝置以實現(xiàn)自主飛行。而為了提高飛機(jī)的安全性, 需要設(shè)計一套設(shè)備監(jiān)測系統(tǒng), 實時的監(jiān)測飛機(jī)的姿態(tài)信息, 機(jī)載設(shè)備的狀況以及電源的情況等。該平臺所使用的電源是兩節(jié)鋰電池串聯(lián)組成的電池組, 利用鋰離子電池的充放電特性, 設(shè)計了一套以mega16l 為核心的充放電管理系統(tǒng)。鋰電池具有體積小、能量密度高、無記憶效應(yīng)、循環(huán)壽命高、高電壓電池和自放電率低等優(yōu)點, 與鎳鎘電池、鎳氫電池不太一樣的是必須考慮充電、放電時的安全性,以防止特性劣化。因此在系統(tǒng)運行過程中, 為了保護(hù)鋰電池的安全, 設(shè)計了一套欠壓保護(hù)電路, 以防止電源管理系統(tǒng)因過用而發(fā)生電池特性和耐久性特性劣化。
電源管理系統(tǒng)總體框架
無人機(jī)電源管理系統(tǒng)是飛機(jī)實現(xiàn)自主飛行的重要組成部分, 其大致框架如圖1 所示。在該系統(tǒng)中, 利用AXI 公司生產(chǎn)的2212/ 34 型號發(fā)電機(jī)將動能轉(zhuǎn)換為220V 交流電, 再經(jīng)過整流穩(wěn)壓后輸出11.6V 的直流電壓, 可由該輸出電壓為兩節(jié)鋰電池充電。電源管理系統(tǒng)的控制器是meg a161單片機(jī), 該控制器通過檢測兩節(jié)鋰電池的電壓大小從而控制繼電器開關(guān)來對電池進(jìn)行充放電管理。
圖1 電源管理系統(tǒng)框架
控制器采集到電源系統(tǒng)中的信息后, 通過無線傳輸設(shè)備將該數(shù)據(jù)實時傳輸給地面。地面監(jiān)控平臺還可以發(fā)送一些指令給mega16l, 通過控制繼電器開關(guān)來控制電池充放電, 從而實現(xiàn)監(jiān)測和控制飛機(jī)的目的。機(jī)上電源模塊由兩節(jié)英特曼電池有限公司生產(chǎn)的鋰電池組成, 電池組電量充足時電壓為8?? 4V.電池的荷電量與整個供電系統(tǒng)的可靠性密切相關(guān), 電池剩余電量越多, 系統(tǒng)的可靠性越高, 因此飛行時能實時獲得電池的剩余電量, 這將大大提高飛機(jī)的可靠性。
電源監(jiān)控系統(tǒng)的實現(xiàn)
直升機(jī)能順利完成飛行任務(wù), 充足的電源供應(yīng)不可或缺,由鋰電池的特性可知, 在過度放電的情況下, 電解液因分解而導(dǎo)致電池特性劣化并造成充電次數(shù)降低。因此為了保護(hù)電池的安全, 電源系統(tǒng)在給控制系統(tǒng)供電前要經(jīng)過欠壓保護(hù)模塊和穩(wěn)壓模塊。為了預(yù)測電源系統(tǒng)中剩余的電量, 這里采用檢測電源系統(tǒng)電壓的方法, 在測得系統(tǒng)的電源電壓后, 查找由放電曲線建立的數(shù)據(jù)庫, 就能估計出電源系統(tǒng)中所剩余的電量。
單片機(jī)所需要的電源電壓是2. 7 ~ 5.5V, 因此可為meg a16l 設(shè)計外部基準(zhǔn)電壓為2.5V, 該基準(zhǔn)穩(wěn)壓電路如圖2所示。所以系統(tǒng)要檢測電池的電壓, 需要將電池用電阻進(jìn)行分壓且最大分得的電壓值不能超過2.5V.控制器測得的電壓值乘上電壓分壓縮小的倍數(shù)后, 就能得到電源系統(tǒng)中的實時電壓。時刻監(jiān)測鋰電池的用電情況, 防止電池過用現(xiàn)象出現(xiàn), 就能達(dá)到有效使用電池容量和延長壽命的目的。
圖2 基準(zhǔn)電壓電路
無刷直流電機(jī)是由電動機(jī)主體和驅(qū)動器組成, 是一種典型的機(jī)電一體化產(chǎn)品。直流無刷電機(jī)與一般直流電機(jī)具有相同的工作原理和應(yīng)用特性, 而其組成是不一樣的, 除了電機(jī)本身外, 前者還多一個換向電路, 直流無刷電動機(jī)的電機(jī)本身是機(jī)電能量轉(zhuǎn)換部分, 它除了電機(jī)電樞、永磁勵磁兩部分外, 還帶有傳感器。該發(fā)電機(jī)的部分AC-DC 電路如圖3 所示。
圖3 無刷電機(jī)AC-DC 電路
充電電路
鋰離子電池的充電特性和鎳鎘、鎳氫電池的充電特性有所不同, 鋰離子電池在充電時, 電池電壓緩慢上升, 充電電流逐漸減小, 當(dāng)電壓達(dá)到4.2V 左右時, 電壓基本不變, 充電電流繼續(xù)減小。因此對于改型充電器可先用先恒流后恒壓充電方式進(jìn)行充電, 具體充電電路如圖4 所示。該電路選用LM2575ADJ 組成斬波式開關(guān)穩(wěn)壓器, 最大充電電流為1A.
圖4 高效開關(guān)型恒流/ 恒壓充電器部分電路
該電路工作原理如下: 當(dāng)電池接入充電器后, 該電路輸出恒定電流, 對電池充電。該充電器的恒流控制部分由雙運放LM358 的一半、增益設(shè)定電阻R3 和R4 、電流取樣電阻R5 和1. 23V 反饋基準(zhǔn)電壓源組成。剛接入電池后, 運放LM358 輸出低電平, 開關(guān)穩(wěn)壓器LM2575-ADJ 輸出電壓高, 電池開始充電。當(dāng)充電電流上升到1A 時, 取樣電阻R5 (50m 歐) 兩端壓降達(dá)到50mV, 該電壓經(jīng)過增益為25 的運放放大后, 輸出1.23V 電壓, 該電壓加到LM2575 的反饋端, 穩(wěn)定反饋電路。當(dāng)電池電壓達(dá)到8.4V 后, LM3420 開始控制LM2575ADJ 的反饋腳。LM3420 使充電器轉(zhuǎn)入到恒壓充電過程, 電池兩端電壓穩(wěn)定在8?? 4V.R6 、R7 和C3 組成補(bǔ)償網(wǎng)絡(luò), 保證充電器在恒流/ 恒壓狀態(tài)下穩(wěn)定工作。若輸入電源電壓中斷, 二極管D2 和運放LM358 中的PNP 輸入級反向偏置, 從而使電池和充電電路隔離, 保證電池不會通過充電電路放電。當(dāng)充電轉(zhuǎn)入恒壓充電狀態(tài)時, 二極管D3 反向偏置, 因此運放中不會產(chǎn)生灌電流。
TOP3 ATmega2560無人機(jī)搖桿微控制器設(shè)計方案
電源欠壓保護(hù)
電源欠壓保護(hù)由鋰電池的電池放電特性易知, 當(dāng)電池處于3.5V 時, 此時電池電量即將用完, 應(yīng)及時給電池充電, 否則電池電壓將急劇下降直至電池?fù)p壞。于是設(shè)計了一套欠壓保護(hù)電路如圖5 所示, 利用電阻分壓所得和由TL431 設(shè)計的基準(zhǔn)電壓比較, 將比較結(jié)果送人LM324 放大電路進(jìn)而觸發(fā)由三極管構(gòu)成的開關(guān)系統(tǒng), 從而控制負(fù)載回路的通阻。試驗證明, 當(dāng)系統(tǒng)電壓達(dá)到臨界危險電壓7V 時, 系統(tǒng)的輸出電流僅為4mA, 從而防止了系統(tǒng)鋰電池過度放電現(xiàn)象的產(chǎn)生。
圖5 欠壓保護(hù)電路
由于鋰離子電池能量密度高, 因此難以確保電池的安全性。在過度充電狀態(tài)下, 電池溫度上升后能量將過剩, 于是電解液分解而產(chǎn)生氣體, 因內(nèi)壓上升而發(fā)生自燃或破裂的危險;反之, 在過度放電狀態(tài)下, 電解液因分解導(dǎo)致電池特性及耐久性劣化, 從而降低可充電次數(shù)。該充電電路和本管理系統(tǒng)能有效的防治鋰電池的過充和過用, 從而確保了電池的安全, 提高鋰電池的使用壽命。
本文設(shè)計了一套UAV 電源管理系統(tǒng), 該系統(tǒng)具有自動控制充放電管理, 實時監(jiān)測電池電壓等功能。該系統(tǒng)已經(jīng)經(jīng)過調(diào)試和試驗驗證了其可行性, 但是為了保證飛機(jī)安全, 還要做更多的試驗以保證無人機(jī)自主飛行的安全和穩(wěn)定。除此之外, 高低頻濾波, 電池電量預(yù)測等也是重要的方向, 需要深入的研究?,F(xiàn)今, 鋰電池的使用范圍越來越廣, 其價格也相對適中,如果掌握先進(jìn)的科學(xué)的使用方法, 讓鋰電池發(fā)揮應(yīng)有的最大效用, 將會節(jié)省大量的資源和財富。
解讀ATmega2560無人機(jī)搖桿微控制器設(shè)計方案
隨著無人機(jī)正在成為新的經(jīng)濟(jì)增長點和國民收入水平的提高,近年來在高校和民間都得到了更多的關(guān)注。無人機(jī)是無人駕駛飛機(jī)的簡稱,是利用無線電遙控(含遠(yuǎn)程駕駛)、預(yù)設(shè)程序控制和(或)基于機(jī)載傳感器自主飛行的可重復(fù)使用不載人飛機(jī)。目前用無線電遙控的無人機(jī)大部分使用JR或者Futaba公司出品的專用遙控器,這些遙控器優(yōu)點是手感好,方便攜帶,但是價格高昂,通道數(shù)較少,難以滿足無人機(jī)執(zhí)行任務(wù)時需要較多通道數(shù)的要求。少部分使用PC作為控制平臺,使用了飛行搖桿作為控制器,能實現(xiàn)更專業(yè)的功能,通道數(shù)也多,但是攜帶不方便,需要攜帶手提電腦或者PC到外場調(diào)試,還必須考慮電池續(xù)航問題,造價也比較高昂,且需要專業(yè)的計算機(jī)軟件知識進(jìn)行編程。
為解決上述不便,本人提出了一種基于Arduino的無人機(jī)控制器設(shè)計方案。Arduino是2005年1月由米蘭交互設(shè)計學(xué)院的兩位教師David Cuartielles和Massimo Banzi聯(lián)合創(chuàng)建,是一塊基于開放原始代碼的Simple I/O平臺.Arduino具有類似java、C語言的開發(fā)環(huán)境,將AVR單片機(jī)相關(guān)的一些寄存器參數(shù)設(shè)置等都函數(shù)化了,即使不太了解 AVR單片機(jī)的朋友也能輕松上手,設(shè)計出各種實用的電路開發(fā)系統(tǒng),是一款價格低廉、易于開發(fā)做應(yīng)用的電子平臺。Arduino包括硬件和軟件在內(nèi)的整個平臺是完全開源的。該方案由于采用Arduino平臺,能快速開發(fā)出用較低成本的飛行搖桿來進(jìn)行操縱航模,體驗真實飛行的感覺。由于接口較多,可以實現(xiàn)高達(dá) 20通道以上,能執(zhí)行各種擴(kuò)展任務(wù),且不需要攜帶電腦。
系統(tǒng)原理與架構(gòu)設(shè)計
系統(tǒng)框圖如圖1所示,分為兩大部分,分別是地面控制部分和控制執(zhí)行部分。地面控制部分是由單片機(jī)讀取飛行遙桿的數(shù)據(jù),即可獲得飛行搖桿各個通道的即時電壓,通過模式轉(zhuǎn)換后,得到各個通道的值。將上述值經(jīng)過編碼后通過無線數(shù)傳模塊發(fā)送出去。
空中指令執(zhí)行部分:
由空中無線數(shù)傳接收到信號后將指令發(fā)送到單片機(jī),單片機(jī)將指令解析,并轉(zhuǎn)換為飛控系統(tǒng)常用的PPM信號,該PPM信號可以直接驅(qū)動飛控系統(tǒng)做出響應(yīng)動作,從而控制無人機(jī)。
模塊原理、設(shè)計與制作
1.搖桿信號獲取原理
要得到飛行搖桿當(dāng)前的桿量,一個方法是通過搖桿的usb接口讀取,由于各個廠家的通訊協(xié)議都不兼容,有些還必須獲得授權(quán),實現(xiàn)起來比較麻煩。另一個方法是直接獲取搖桿的電位器值。實際上現(xiàn)在市面上的搖桿除了非常高端的搖桿用了霍爾傳感,大部分都采用了普通的電位器,按照可變電阻來讀取即可。本模塊采用市場上常見的賽鈦客FLY5飛行搖桿,拆開來外殼,所有電位器都是用3P的白色連接插座和電路板連接的,XYZ三軸用來控制飛機(jī)姿態(tài)(升降、副翼和方向),油門由拉桿控制,苦力帽可以用來控制fpv攝像頭云臺,還有其他的按鍵可以映射為其他通道,例如空中投擲物體,自動回家,切換飛行模式等。
2.桿量解析處理模塊
我們采用的單片機(jī)系統(tǒng)采用了ArduinoM E G A 2 5 6 0 開發(fā)板。該開發(fā)板是一塊以ATmega2560為核心的微控制器開發(fā)板,本身具有54組數(shù)字I/O其中14組可做PWM輸出),16組模數(shù)轉(zhuǎn)換輸入端,4 組串口,使用16MHz的晶振。讀取搖桿的XYZ軸的電阻值,只需將電位器的電源和地接在電調(diào)輸出的5v和地上,信號線接在Arduino板的模擬輸入口上,由于Arduino的AD讀取精度最高是10位,在程序里將電阻值映射成0到1023的數(shù)值,F(xiàn)LY5飛行搖桿的分辨率大概在800~900左右。飛行搖桿的電位器是線性的,反應(yīng)較為靈敏的。實際測試中搖桿回中后,和打到最大和最小的地方,數(shù)據(jù)會有一些波動和噪點,采用卡爾曼濾波算法進(jìn)行處理,可以獲得平滑的曲線。
3.無線收發(fā)模塊
無線數(shù)傳模塊采用了一對X b e e P R O900HP無線收發(fā)模塊,該模塊功率為250mW.它們分別用來連接地面控制板單片機(jī)和連接飛行控制的單片機(jī)。配備原裝天線,最遠(yuǎn)可以達(dá)到10KM,比傳統(tǒng)遙控器距離極大的增加。標(biāo)準(zhǔn)的串口TTL接口,將RX和TX分別接在單片機(jī)板上的TX和RX端口上即可。波特率設(shè)置為115200,數(shù)傳是半雙工的,通訊增加CRC校驗,防止數(shù)據(jù)丟包和被干擾篡改。
本文提供的解決方案,成本較低,開發(fā)方便,易于實現(xiàn)。不足之處是單向傳輸雖然延時低,但是無法實時返回飛行器的各種數(shù)據(jù)。為解決該問題,只能使用2對無線模塊,或采用MIMO天線能實現(xiàn)全雙工的無線模塊,才能解決。后期將會繼續(xù)研究,以實現(xiàn)低成本的雙向傳輸,并實現(xiàn)實時數(shù)據(jù)返回的OSD和低延時控制。
無人機(jī)陀螺儀主控芯片STM32應(yīng)用#e#
TOP4 無人機(jī)陀螺儀主控芯片STM32應(yīng)用詳解
在無人機(jī)系統(tǒng)與地面站通信過程中,機(jī)載陀螺儀姿態(tài)數(shù)據(jù)的高速產(chǎn)生與外部相對低速的無線數(shù)據(jù)模塊傳輸?shù)拿苋找嫱怀觯瑖?yán)重制約著無人機(jī)的發(fā)展。針對這一問題,采用FPGAFIFO作為高速數(shù)據(jù)緩沖,提出一種基于FPGA內(nèi)建FIFO的無人機(jī)陀螺儀前級通信接口。通過高速異步FIFO緩沖,將無人機(jī)陀螺儀姿態(tài)數(shù)據(jù)經(jīng)由FPGA準(zhǔn)確無誤地發(fā)送給地面站,顯著提高數(shù)據(jù)傳輸質(zhì)量,實現(xiàn)了高速芯片與低速設(shè)備之間的通信。整個設(shè)計在實際應(yīng)用中效果良好,數(shù)據(jù)穩(wěn)定可靠,滿足了低誤碼率與高穩(wěn)定性的要求,以及無人機(jī)與地面站高速通信的需求,有著廣闊的市場應(yīng)用前景。
無人機(jī)系統(tǒng)對于地面站發(fā)送的控制信號以及飛行器傳回的姿態(tài)數(shù)據(jù)有著極高的實時性、可靠性與穩(wěn)定性要求,這對無人機(jī)通信系統(tǒng)設(shè)計提出了新的挑戰(zhàn)。對于采用 ARM作為微處理器的無人機(jī)系統(tǒng)來說,系統(tǒng)往往需要協(xié)調(diào)基于ARM處理器的高速陀螺儀模塊與相對低速的外部無線數(shù)據(jù)傳輸模塊間的工作。在通信高穩(wěn)定性與低誤碼率的要求下,處理器不得不花時間運行空操作來等待外部相對低速的傳輸模塊完成一幀數(shù)據(jù)的收/發(fā)。由于等待所浪費的處理器運算周期無形中降低了整個飛控系統(tǒng)的實時性,進(jìn)而帶來許多潛在的不穩(wěn)定因素。本設(shè)計結(jié)合無人機(jī)系統(tǒng)發(fā)展需求,采用FPGA FIFO作為高速數(shù)據(jù)緩沖,提出一種基于FPGA內(nèi)建FIFO的無人機(jī)陀螺儀前級通信接口。通過高速異步FIFO緩沖,將無人機(jī)陀螺儀姿態(tài)數(shù)據(jù)經(jīng)由 FPGA準(zhǔn)確無誤地發(fā)送給地面站,保證了傳輸質(zhì)量,架起了高速芯片與低速設(shè)備之間溝通的橋梁。
FPGA內(nèi)建FIFO的基本工作原理
FIFO即先進(jìn)先出隊列,采用環(huán)形存儲電路結(jié)構(gòu),是一種傳統(tǒng)的按序執(zhí)行方法。先進(jìn)入的指令先完成并引退,隨后才執(zhí)行第二條指令,是一種先進(jìn)先出的數(shù)據(jù)緩存器。根據(jù)FIFO的讀寫時鐘頻率是否相同,可將FIFO分為同步FIFO與異步FIFO。FIFO的應(yīng)用可以很好地協(xié)調(diào)不同時鐘、不同數(shù)據(jù)寬度數(shù)據(jù)的通信,滿足高/低速時鐘頻率要求。與普通存儲器相比,F(xiàn)IFO沒有外部讀寫地址線,使用方便。
采用FPGA異步FIFO連接基于ARM處理器的高速無人機(jī)陀螺儀模塊與相對低速的無線數(shù)據(jù)傳輸外設(shè)。從硬件的觀點來看,F(xiàn)IFO實質(zhì)上就是一塊數(shù)據(jù)內(nèi)存。異步FIFO采用2個時鐘信號控制其讀寫操作,分別為寫時鐘(wrclk)和讀時鐘(rdclk)。一個用來寫數(shù)據(jù),即將數(shù)據(jù)存入FIFO;另一個用來讀數(shù)據(jù),即將數(shù)據(jù)從FIFO中取出。與 FIFO操作相關(guān)的有兩個指針:寫指針指向要寫的內(nèi)存部分;讀指針指向要讀的內(nèi)存部分。FIFO控制器通過外部的讀寫信號控制這兩個指針移動,并由此產(chǎn)生 FIFO空信號或滿信號。讀寫時鐘相互獨立設(shè)計,有效地保證了FIFO兩端數(shù)據(jù)的異步通信。
基于ARM的無人機(jī)陀螺儀接口結(jié)構(gòu)
由于機(jī)載燃油和電能儲備的制約,無人機(jī)載設(shè)備要求小巧輕便,能效比高,因此對芯片的選型及電路結(jié)構(gòu)提出了較高的要求。綜合穩(wěn)定性、數(shù)據(jù)精度、工作溫度、封裝體積以及能耗等各方面因素,對無人機(jī)陀螺儀傳感器經(jīng)行嚴(yán)格篩選,確定了所示的陀螺儀方案。無人機(jī)陀螺儀的主控芯片選用ARM 32 bit CortexTM M3內(nèi)核的STM32F103T8處理器。其內(nèi)建64 KB的閃存存儲器和20 KB的運行內(nèi)存,以及7通道的DMA、7個定時器、2個UART端口等。通過板載的8 MHz晶體和STM32內(nèi)部的PLL,控制器可以運行在72 MHz的主頻上,為姿態(tài)解算提供強(qiáng)大的硬件支持。
三軸加速度與三軸角速度傳感器采用Invensense公司的MPU-6050單芯片方案,此芯片為全球首例整合性6軸運動處理組件,相比其他多芯片實現(xiàn)方案,免除了整合陀螺儀與加速度器軸間差的問題,大大減少了封裝空間。三軸磁力計采用Honeywell公司的HMC5883L芯片,此芯片內(nèi)部采用先進(jìn)的高分辨率HMC188X系列磁阻傳感器與行業(yè)領(lǐng)先的各向異性磁阻技術(shù)(AMR),具有軸向高靈敏度和線性高精度的特點,測量范圍從毫高斯到8高斯,穩(wěn)定可靠。氣壓傳感器采用博世公司的BMP180芯片,該芯片性能卓越,絕對精度可以達(dá)到0.03 hpa,并且功耗極低。傳感器采用強(qiáng)大的7 pin陶瓷無引線芯片承載(LCC)超薄封裝,安裝使用方便。各傳感器與ARM處理器采用I2C總線連接,示意圖如圖3所示。
陀螺儀與FIFO及FPGA的連接
處理器采集各傳感器信號,在ARM內(nèi)部進(jìn)行姿態(tài)解算,進(jìn)而得到俯仰角、橫滾角、航向角、氣壓、高度和溫度信息。為了及時將解算得到的數(shù)據(jù)發(fā)送回地面站,處理器控制寫請求信號wrreq和寫時鐘wrclk將這些數(shù)據(jù)高速寫入FIFO,然后回到飛行控制程序,進(jìn)行下一周期的姿態(tài)解算。FIFO在數(shù)據(jù)寫滿后,寫滿標(biāo)志位 wrfull會置高電平,ARM處理器通過檢測寫滿標(biāo)志位的狀態(tài)來判斷是否繼續(xù)寫入數(shù)據(jù)。與此同時,在FPGA中通過檢測所讀取FIFO是否為空標(biāo)志位 rdempty來判斷是否繼續(xù)讀取數(shù)據(jù)。讀空標(biāo)志位為低電平代表FIFO中有數(shù)據(jù),可以讀取,則配合讀請求信號rdreq和讀時鐘rdclk及時讀取數(shù)據(jù),直到將數(shù)據(jù)全部讀出,標(biāo)志位變?yōu)楦唠娖?,此時FIFO中已經(jīng)沒有數(shù)據(jù)?;贏RM的陀螺儀與FIFO及FPGA的連接如圖4所示。
TOP5盤點無人機(jī)飛控大腦與MEMS傳感器
制造一個大腦并不容易。大黃蜂的大腦中有100多萬個相互聯(lián)系的神經(jīng)元細(xì)胞,幫助它完成各種意識活動。2014年年末,一個科學(xué)家團(tuán)隊曾給一個有輪子的樂高機(jī)器人安裝過一個數(shù)字蠕蟲大腦,但是這樣的大腦只有302個神經(jīng)元細(xì)胞。到目前為止,“綠色大腦計劃”團(tuán)隊只重建了黃蜂大腦中與視覺有關(guān)的部分。但是這樣的成果已經(jīng)非常令人震驚了。無人機(jī)利用視頻攝像頭和人造大腦軟件沿著走廊飛行,飛行模式就和經(jīng)過訓(xùn)練完成同樣任務(wù)的大黃蜂一模一樣。現(xiàn)在,這個虛擬大腦還只能追蹤位置的移動,而無法識別顏色或形狀?!熬G色大腦計劃”的科學(xué)家希望,過一段時間能夠用數(shù)字重建完整的大黃蜂大腦,并制造出第一臺像大黃蜂一樣自動行動的機(jī)器人。但是現(xiàn)在,他們的重點還放在重建大黃蜂的視覺系統(tǒng)和嗅覺系統(tǒng)。
飛控的大腦:微控制器
在四軸飛行器的飛控主板上,需要用到的芯片并不多。目前的玩具級飛行器還只是簡單地在空中飛行或停留,只要能夠接收到遙控器發(fā)送過來的指令,控制四個馬達(dá)帶動槳翼,基本上就可以實現(xiàn)飛行或懸停的功能。意法半導(dǎo)體高級市場工程師介紹,無人機(jī)/多軸飛行器主要部件包括飛行控制以及遙控器兩部分。其中飛行控制包括電調(diào)/馬達(dá)控制、飛機(jī)姿態(tài)控制以及云臺控制等。目前主流的電調(diào)控制方式主要分成BLDC方波控制以及FOC正弦波控制。
新唐的 MCU負(fù)責(zé)人表示: 多軸飛行器由遙控, 飛控,動力系統(tǒng), 航拍等不同模塊構(gòu)成, 根據(jù)不同等級產(chǎn)品的需求,會采用到不同CPU內(nèi)核。例如小四軸的飛行主控, 因功能單純, 體積小, 必須同時整合遙控接收, 飛行控制及動力驅(qū)動功能;中高階多軸飛行器則采用內(nèi)建 DSP 及浮點運算單元的, 負(fù)責(zé)飛行主控功能,驅(qū)動無刷電機(jī)的電調(diào)(ESC)板則采用MINI5系列設(shè)計。低階遙控器使用 SOP20 封裝的4T 8051 N79E814;中高階遙控器則采用Cortex-M0 M051系列。另外, 內(nèi)建ARM9及H.264視頻邊譯碼器的N329系列SOC則應(yīng)用于2.4G及5.8G的航拍系統(tǒng)。在飛控主板上,目前控制和處理用得最多的還是MCU而不是CPU。由于對于飛行控制方面主要都是浮點運算,簡單的ARM Cortex-M4內(nèi)核32位MCU都可以很好的滿足。有的傳感器MEMS芯片中已經(jīng)集成了DSP,與之搭配的話,更加簡單的8位單片機(jī)也可以做到。
高通和英特爾推的飛控主芯片
CES上我們看到了高通和英特爾展示了功能更為豐富的多軸飛行器,他們采用了比微控制器(MCU)更為強(qiáng)大的CPU或是ARM Cortex-A系列處理器作為飛控主芯片。例如,高通CES上展示的Snapdragon Cargo無人機(jī)是基于高通Snapdragon芯片開發(fā)出來的飛行控制器,它有無線通信、傳感器集成和空間定位等功能。Intel CEO Brian Krzanich也親自在CES上演示了他們的無人機(jī)。這款無人機(jī)采用了“RealSense”技術(shù),能夠建起3D地圖和感知周圍環(huán)境,它可以像一只蝙蝠一樣飛行,能主動避免障礙物。英特爾的無人機(jī)是與一家德國工業(yè)無人機(jī)廠商Ascending Technologies合作開發(fā),內(nèi)置了高達(dá)6個英特爾的“RealSense”3D攝像頭,以及采用了四核的英特爾凌動(Atom)處理器的PCI- express定制卡,來處理距離遠(yuǎn)近與傳感器的實時信息,以及如何避免近距離的障礙物。這兩家公司在CES展示如此強(qiáng)大功能的無人機(jī),一是看好無人機(jī)的市場,二是美國即將推出相關(guān)法規(guī),對無人機(jī)的飛行將有嚴(yán)格的管控。
此外,活躍在在機(jī)器人市場的歐洲處理器廠商XMOS也表示已經(jīng)進(jìn)入到無人機(jī)領(lǐng)域。XMOS公司市場營銷和業(yè)務(wù)拓展副總裁Paul Neil博士表示,XMOS的xCORE多核微控制器系列已被一些無人機(jī)/多軸飛行器的OEM客戶采用。在這些系統(tǒng)中,XMOS多核微控制器既用于飛行控制也用于MCU內(nèi)部通信。
Paul Neil說:xCORE多核微控制器擁有數(shù)量在8到32個之間的、頻率高達(dá)500MHz 的32位RISC內(nèi)核。xCORE器件也帶有Hardware Response I/O接口,它們可提供卓越的硬件實時I/O性能,同時伴隨很低的延遲?!斑@種多核解決方案支持完全獨立地執(zhí)行系統(tǒng)控制與通信任務(wù),不產(chǎn)生任何實時操作系統(tǒng)(RTOS)開銷。xCORE微控制器的硬件實時性能使得我們的客戶能夠?qū)崿F(xiàn)非常精確的控制算法,同時在系統(tǒng)內(nèi)無抖動。xCORE多核微控制器的這些優(yōu)點,正是吸引諸如無人機(jī)/多軸飛行器這樣的高可靠性、高實時性應(yīng)用用戶的關(guān)鍵之處?!?/p>
多軸飛行器需要用到四至六顆無刷電機(jī)(馬達(dá)),用來驅(qū)動無人機(jī)的旋翼。而馬達(dá)驅(qū)動控制器就是用來控制無人機(jī)的速度與方向。原則上一顆馬達(dá)需要配置一顆8位MCU來做控制,但也有一顆MCU控制多個BLDC馬達(dá)的方案。
多軸無人機(jī)的MEMS傳感
某無人機(jī)方案商總經(jīng)理認(rèn)為,目前業(yè)內(nèi)的玩具級飛行器,雖然大部分從三軸升級到了六軸MEMS,但通常采用的都是消費類產(chǎn)品如平板或手機(jī)上較常用的價格敏感型型號。在專業(yè)航拍以及專為航模發(fā)燒友開發(fā)的中高端無人機(jī)上,則會用到質(zhì)量更為價格更高的傳感器,以保障無人機(jī)更為穩(wěn)定、安全的飛行。這些 MEMS傳感器主要用來實現(xiàn)飛行器的平穩(wěn)控制和輔助導(dǎo)航。飛行器之所以能懸停,可以做航拍,是因為MEMS傳感器可以檢測飛行器在飛行過程中的俯仰角和滾轉(zhuǎn)角變化,在檢測到角度變化后,就可以控制電機(jī)向相反的方向轉(zhuǎn)動,進(jìn)而達(dá)到穩(wěn)定的效果。這是一個典型的閉環(huán)控制系統(tǒng)。
ADI亞太區(qū)微機(jī)電產(chǎn)品市場和應(yīng)用經(jīng)理表示,ADI產(chǎn)品主要的優(yōu)勢就是在各種惡劣條件下,均可獲得高精度的輸出。以陀螺儀為例,它的理想輸出是只響應(yīng)角速度變化,但實際上受設(shè)計和工藝的限制,陀螺對加速度也是敏感的,就是我們在陀螺儀數(shù)據(jù)手冊上常見的deg/sec/g的指標(biāo)。對于多軸飛行器的應(yīng)用來說,這個指標(biāo)尤為重要,因為飛行器中的馬達(dá)一般會帶來較強(qiáng)烈的振動,一旦減震控制不好,就會在飛行過程中產(chǎn)生很大的加速度,那勢必會帶來陀螺輸出的變化,進(jìn)而引起角度變化,馬達(dá)就會誤動作,最后給終端用戶的直觀感覺就是飛行器并不平穩(wěn)。
除此之外,在某些情況下,如果飛行器突然轉(zhuǎn)彎,可能會造成輸入轉(zhuǎn)速超過陀螺儀的測試量程,理想情況下,陀螺儀的輸出應(yīng)該是飽和輸出,待轉(zhuǎn)速恢復(fù)到陀螺儀量程范圍后,陀螺儀再正確反應(yīng)實時的角速度變化,但有些陀螺儀確不是這樣,一旦輸入超過量程,陀螺便會產(chǎn)生震蕩輸出,給出完全錯誤的角速度。還有某些情況下,飛行器會受到較大的加速度沖擊,理想情況陀螺儀要盡量抑制這種沖擊,ADI的陀螺儀在設(shè)計的時候,也充分考慮到這種情況,利用雙核和四核的機(jī)械結(jié)構(gòu),采用差分輸出的原理來抑制這種“共模”的沖擊,準(zhǔn)確測量“差?!钡慕撬俣茸兓?。但某些陀螺儀在這種情況下會產(chǎn)生非常大錯誤輸出,甚至是產(chǎn)生震蕩輸出?!皩τ陲w行器來說,最重要的一點就是安全,無論它的硬件設(shè)計還是軟件設(shè)計,都要首先保證安全,而后才是極致的用戶體驗。”
隨著無人機(jī)的功能不斷增加,GPS傳感器、紅外傳感器、氣壓傳感器、超聲波傳感器越來越多地被用到無人機(jī)上。方案商已經(jīng)在利用紅外和超聲波傳感器來開發(fā)出可自動避撞的無人機(jī),以滿足將來相關(guān)法規(guī)的要求。集成了GPS傳感器的無人機(jī)則可以實現(xiàn)一鍵返航功能,防止無人機(jī)飛行丟失。而內(nèi)置了GPS功能的無人機(jī),可以在軟件中設(shè)置接近機(jī)場或航空限制的敏感地點,不讓飛機(jī)起飛。
TOP6 無人機(jī)系統(tǒng)模塊開發(fā)設(shè)計與仿真
在開發(fā)的早期階段,開發(fā)一個硬件在環(huán)(HIL)測試環(huán)境來測試無人機(jī)GNC解決方案。HIL測試環(huán)境是軟件仿真和飛機(jī)實驗的一個中間步驟,對于無人機(jī)GNC軟件的開發(fā)過程非常關(guān)鍵。通過HIL環(huán)境,工程師可以在一個可控的仿真環(huán)境中對無人機(jī)軟件進(jìn)行測試。同時,它也能加速設(shè)計,縮短開發(fā)周期,通過HIL環(huán)境,工程師可以發(fā)覺軟件仿真(主要是同步和定時)中沒有出現(xiàn)的問題,從而避免現(xiàn)場試驗的故障,并增加無人機(jī)團(tuán)隊的安全性。開發(fā)了一個通用的 HIL平臺來設(shè)計驗證控制和導(dǎo)航算法。這個HIL測試環(huán)境完全集成在一個基于模型的設(shè)計開發(fā)周期中(見圖1)。
圖1 : HWIL測試環(huán)境示意圖
基于模型的開發(fā)
首先我們設(shè)計編改了無人機(jī)平臺,將其用于仿真,并將控制器和算法部署至硬件中。根據(jù)基于模型的設(shè)計理念來完成這個任務(wù)。對于系統(tǒng)設(shè)計和仿真來說這是一個可靠方便的方法。使用代碼自動生成工具可以使我們減少設(shè)計時間,輕松完成對于測試架構(gòu)的重復(fù)利用,以及快速系統(tǒng)原型,從而形成一個連續(xù)的確認(rèn)和驗證過程。
構(gòu)架的目的包括:在不同的硬件平臺上不用任何改變即可對模型重復(fù)利用;對設(shè)計測試套件模型進(jìn)行重復(fù)使用以驗證目標(biāo)系統(tǒng);將透明模型完全集成到目標(biāo)硬件中,并創(chuàng)建一個系統(tǒng)的,快速的流程,將自動生成的代碼集成到目標(biāo)硬件,從而使得控制工程師無需軟件工程師的參與,即可以快速測試模型(見圖2)。對于這個項目,使用Simulink?公司的MathWorks軟件(我們還使用了Esterel Technologies公司的SCADE套件)開發(fā)了模型任務(wù),并使用MathWorks和Real-Time Workshop?公司的軟件實現(xiàn)自動編碼。需要兩次不同的編改:在無人機(jī)中進(jìn)行測試及執(zhí)行的算法是由ANSI C代碼編寫的,仿真無人機(jī)動態(tài)行為的數(shù)學(xué)模型將通過LabVIEW仿真接口工具包轉(zhuǎn)換至NI LabVIEW軟件動態(tài)庫中。
圖2: 基于模型的開發(fā)流程
在最終的系統(tǒng)中,我們使用多個LabVIEW I/O模塊來仿真一些無人機(jī)航空電子和邏輯傳感器以及激勵器接口。
LabVIEW Real-Time PXI
PXI 是一個基于PC的平臺,可用于測試,測量和控制,能夠在不同的接口和總線中提供高帶寬和超低的執(zhí)行延時。在這個案例中,PXI需要在一個復(fù)雜的無人機(jī)模型中運行,該模型會在實時中以動態(tài)庫的形式被執(zhí)行。 在系統(tǒng)中使用PXI模塊能讓我們使用無人機(jī)上完全一樣的接口進(jìn)行HIL仿真。所以,我們會以現(xiàn)場實驗完全相同的配置驗證GNC算法處理單元。這對于一些使用純仿真不足以捕捉所有硬件相關(guān)問題(例如信號噪音,錯誤和同步問題)的系統(tǒng)來說是十分重要的。通過Spirent GSS8000 GPS仿真器,我們能夠仿真并生成用戶選擇的GNSS星座衛(wèi)星所發(fā)出的相同的射頻信號。這些信號會以飛行實驗相同的方式傳送到無人機(jī)上真實的GPS傳感器,并能仿真慣性傳感器(加速度計和回轉(zhuǎn)儀)??梢灾付ú煌那闆r,降級信號,指定天線模式及模擬IMU傳感器錯誤。
圖3:實驗中使用的基于CB5000 RC直升機(jī)改裝而成的無人機(jī)
板載處理單元
在實時操作系統(tǒng)(QNX或VxWorks)中運行一個PC/104單元,操作系統(tǒng)中包含了算法和控制策略,用于測試自動代碼生成工具和集成架構(gòu)創(chuàng)建的代碼的完成。我們在現(xiàn)場實驗的真實無人機(jī)中也使用了相同的單元。我們可以使用Simulink External Mode軟件對無人機(jī)進(jìn)行調(diào)試。通過這個軟件,我們可以監(jiān)測用戶需要實時知曉的信號值。此外我們可以改變嵌入式處理單元中所執(zhí)行算法的參數(shù)。在操作中所使用的界面,與控制工程師在仿真設(shè)計算法時所使用的界面完全一樣。由此,整個測試環(huán)境完全透明,而且能以同現(xiàn)場測試一樣的方式進(jìn)行HIL測試,從而大幅減少開發(fā)時間。
對比飛行遙測和使用同樣的GNC算法的HIL仿真,可以表明HIL的精準(zhǔn)性和與真實測試結(jié)果的相似性。在一架改裝過的無線電控制的直升飛機(jī)上集成了幾個傳感器(加速度計,回轉(zhuǎn)儀,磁力計,GPS和一個高度計)和一個處理單元(見圖3),將其轉(zhuǎn)變成一架無人機(jī),進(jìn)行飛行測試。無人機(jī)在沒有過沖或任何一個永久誤差的情況下,達(dá)到了水平面要求的參考值(見圖4和圖5)。HIL仿真和真實的飛行測試結(jié)果極其一致。
圖4:北方位置對比結(jié)果
圖5: 西方位置對比結(jié)果
HIL環(huán)境非常適用于測試包含真實硬件的整個系統(tǒng)。使用NI PXI,我們在實時狀態(tài)下以低延時仿真了一個復(fù)雜的無人機(jī)模型,并完美模擬了航空設(shè)備界面。這個環(huán)境能檢測出軟件仿真中無法顯示的錯誤,從而避免現(xiàn)場實驗意外的發(fā)生。因為控制工程師在設(shè)計,開發(fā)和驗證過程中也會使用相同的可視化和調(diào)試工具,由此可以快速重復(fù)循環(huán),減少開發(fā)時間。
評論