在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)中賦予了什么數(shù)學(xué)意義

姚小熊27 ? 來源:雷鋒網(wǎng) ? 作者:雷鋒網(wǎng) ? 2020-10-14 09:40 ? 次閱讀

機(jī)器學(xué)習(xí)中的用于聲稱性能的指標(biāo)標(biāo)準(zhǔn)很少被討論。由于在這個(gè)問題上似乎沒有一個(gè)明確的、廣泛的共識(shí),因此我認(rèn)為提供我一直在倡導(dǎo)并盡可能遵循的標(biāo)準(zhǔn)可能會(huì)很有趣。它源于這個(gè)簡單的前提,這是我的科學(xué)老師從中學(xué)開始就灌輸給我的:

科學(xué)報(bào)告的一般規(guī)則是,您寫下的每個(gè)數(shù)字都應(yīng)為“真”的,因?yàn)椤罢妗钡亩x是什么。

讓我們來研究一下這對(duì)測試性能等統(tǒng)計(jì)量意味著什么。當(dāng)你在科學(xué)出版物中寫下以下陳述時(shí):

測試準(zhǔn)確率為52.34%。你所表達(dá)的是,據(jù)你所知,你的模型在從測試分布中提取的未見數(shù)據(jù)上成功的概率在0.52335和0.52345之間。

這是一個(gè)非常強(qiáng)有力的聲明。

考慮你的測試集是從正確的測試分布中抽取的N個(gè)樣本IID組成的。成功率可以表示為一個(gè)二項(xiàng)式變量,其平均概率p由樣本平均值估計(jì):p?s/N

其標(biāo)準(zhǔn)差為:σ=√p(1-p)。

其中當(dāng)p=0.5時(shí),其上限為0.5。

在正態(tài)近似下,估計(jì)量的標(biāo)準(zhǔn)差為:δ=σ/√N(yùn)。

這個(gè)精度估計(jì)上的誤差δ是這樣的,在最壞的情況下,有約50%的精度:

換句話說,為了保證上述報(bào)告中例子52.34%的準(zhǔn)確率,你的測試集的大小至少應(yīng)該在30M樣本的數(shù)量級(jí)上!這種粗略的分析很容易轉(zhuǎn)化為除了準(zhǔn)確率以外的任何可計(jì)算的數(shù)量,盡管不能轉(zhuǎn)化為像似然率或困惑度這樣的連續(xù)數(shù)字。

下面是一些常見的機(jī)器學(xué)習(xí)數(shù)據(jù)集的說明。

在ImageNet上可以合理地報(bào)告多少位數(shù)的精度?準(zhǔn)確率在80%左右,測試集是15萬張圖片:

√(0.8*0.2/150000)=0.103%

這意味著你幾乎可以報(bào)告XX.X%的數(shù)字,而實(shí)際上每個(gè)人都是這樣做的。

MNIST呢,準(zhǔn)確率在99%:

√(0.99*0.01/10000)=0.099%

噗,也報(bào)個(gè)XX.X%就OK了!

然而,最值得注意的是,在大多數(shù)情況下,性能數(shù)據(jù)并不是單獨(dú)呈現(xiàn)的,而是用來比較同一測試集上的多種方法。在這種情況下,實(shí)驗(yàn)之間的抽樣方差會(huì)被抵消,即使在樣本量較小的情況下,它們之間的準(zhǔn)確度差異也可能在統(tǒng)計(jì)學(xué)上很顯著。估計(jì)圖方差的一個(gè)簡單方法是執(zhí)行bootstrap重采樣。更嚴(yán)格、通常更嚴(yán)格的檢驗(yàn)包括進(jìn)行配對(duì)差異檢驗(yàn)或更普遍的方差分析。

報(bào)告超出其內(nèi)在精度的數(shù)字可能很具有極大的吸引力,因?yàn)樵谂c基線進(jìn)行比較的情況下,或者當(dāng)人們認(rèn)為測試集是一成不變的情況下,同時(shí)也不是從測試分布中抽取的樣本時(shí),性能數(shù)字往往更加重要。當(dāng)在生產(chǎn)中部署模型時(shí),這種做法會(huì)讓人感到驚訝,并且固定的測試集假設(shè)突然消失了,還有一些無關(guān)緊要的改進(jìn)。更普遍的是,這種做法會(huì)直接導(dǎo)致對(duì)測試集進(jìn)行過擬合。

那么,在我們的領(lǐng)域中數(shù)字為“真”意味著什么?好吧,這確實(shí)很復(fù)雜。對(duì)于工程師而言,很容易辯稱不應(yīng)該報(bào)告的尺寸超出公差。或者對(duì)于物理學(xué)家來說,物理量不應(yīng)超過測量誤差。對(duì)于機(jī)器學(xué)習(xí)從業(yè)者,我們不僅要應(yīng)對(duì)測試集的采樣不確定性,而且還要應(yīng)對(duì)獨(dú)立訓(xùn)練運(yùn)行,訓(xùn)練數(shù)據(jù)的不同初始化和改組下的模型不確定性。

按照這個(gè)標(biāo)準(zhǔn),在機(jī)器學(xué)習(xí)中很難確定哪些數(shù)字是“真”的。解決辦法當(dāng)然是盡可能地報(bào)告其置信區(qū)間。置信區(qū)間是一種更精細(xì)的報(bào)告不確定性的方式,可以考慮到所有隨機(jī)性的來源,以及除簡單方差之外的顯著性檢驗(yàn)。它們的存在也向你的讀者發(fā)出信號(hào),表明你已經(jīng)考慮過你所報(bào)告的內(nèi)容的意義,而不僅僅是你的代碼所得到的數(shù)字。用置信區(qū)間表示的數(shù)字可能會(huì)被報(bào)告得超出其名義上的精度,不過要注意的是,你現(xiàn)在必須考慮用多少位數(shù)來報(bào)告不確定性,正如這篇博文所解釋的那樣。一路走來都是烏龜。

數(shù)字少了,雜亂無章的東西就少了,科學(xué)性就強(qiáng)了。

避免報(bào)告超出統(tǒng)計(jì)學(xué)意義的數(shù)字結(jié)果,除非你為它們提供一個(gè)明確的置信區(qū)間。這理所當(dāng)然地被認(rèn)為是科學(xué)上的不良行為,尤其是在沒有進(jìn)行配對(duì)顯著性測試的情況下,用來論證一個(gè)數(shù)字比另一個(gè)數(shù)字好的時(shí)候。僅憑這一點(diǎn)就經(jīng)常有論文被拒絕。一個(gè)良好的習(xí)慣是對(duì)報(bào)告中帶有大量數(shù)字的準(zhǔn)確率數(shù)字始終持懷疑態(tài)度。還記得3000萬、30萬和30萬的經(jīng)驗(yàn)法則對(duì)最壞情況下作為“嗅覺測試”的統(tǒng)計(jì)顯著性所需樣本數(shù)量的限制嗎?它會(huì)讓你避免追逐統(tǒng)計(jì)上的“幽靈”。
責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    數(shù)學(xué)專業(yè)轉(zhuǎn)人工智能方向:考研/就業(yè)前景分析及大學(xué)四年學(xué)習(xí)路徑全揭秘

    隨著AI技術(shù)的不斷進(jìn)步,專業(yè)人才的需求也日益增長。數(shù)學(xué)作為AI的基石,為機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、數(shù)據(jù)分析等提供理論基礎(chǔ)和工具,因此越來越多的
    的頭像 發(fā)表于 02-07 11:14 ?764次閱讀
    <b class='flag-5'>數(shù)學(xué)</b>專業(yè)轉(zhuǎn)人工智能方向:考研/就業(yè)前景分析及大學(xué)四年<b class='flag-5'>學(xué)習(xí)</b>路徑全揭秘

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章,我們介紹機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多
    的頭像 發(fā)表于 12-30 09:16 ?968次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    zeta在機(jī)器學(xué)習(xí)的應(yīng)用 zeta的優(yōu)缺點(diǎn)分析

    在探討ZETA在機(jī)器學(xué)習(xí)的應(yīng)用以及ZETA的優(yōu)缺點(diǎn)時(shí),需要明確的是,ZETA一詞在不同領(lǐng)域可能有不同的含義和應(yīng)用。以下是根據(jù)不同領(lǐng)域的ZETA進(jìn)行的分析: 一、ZETA在機(jī)器
    的頭像 發(fā)表于 12-20 09:11 ?821次閱讀

    傅立葉變換在機(jī)器學(xué)習(xí)的應(yīng)用 常見傅立葉變換的誤區(qū)解析

    傅里葉變換在機(jī)器學(xué)習(xí)的應(yīng)用 傅里葉變換是一種將信號(hào)分解為其組成頻率分量的數(shù)學(xué)運(yùn)算,它在機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 12-06 17:06 ?876次閱讀

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    計(jì)算機(jī)系統(tǒng)自身的性能”。事實(shí)上,由于“經(jīng)驗(yàn)”在計(jì)算機(jī)系統(tǒng)主要以數(shù)據(jù)的形式存在,因此機(jī)器學(xué)習(xí)需要設(shè)法對(duì)數(shù)據(jù)進(jìn)行分析學(xué)習(xí),這就使得它逐漸成為智能數(shù)據(jù)分析技術(shù)的創(chuàng)新源之一,
    的頭像 發(fā)表于 11-16 01:07 ?789次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    eda在機(jī)器學(xué)習(xí)的應(yīng)用

    機(jī)器學(xué)習(xí)項(xiàng)目中,數(shù)據(jù)預(yù)處理和理解是成功構(gòu)建模型的關(guān)鍵。探索性數(shù)據(jù)分析(EDA)是這一過程不可或缺的一部分。 1. 數(shù)據(jù)清洗 數(shù)據(jù)清洗 是機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 11-13 10:42 ?723次閱讀

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】時(shí)間序列的信息提取

    。 時(shí)間序列的單調(diào)性理論是數(shù)學(xué)求導(dǎo)。下面是使用EWMA分析股票價(jià)格變動(dòng),以決定買入還是賣出。通過仿真數(shù)據(jù),這種指數(shù)移動(dòng)平均的技術(shù)剔除了短期波動(dòng),有助看清股票整體趨勢。 通過對(duì)本章學(xué)習(xí),對(duì)時(shí)間序列的研究目的、方法與特征有較全
    發(fā)表于 08-17 21:12

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 簡單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制一幅時(shí)間序列分析與機(jī)器學(xué)習(xí)融合應(yīng)用的宏偉藍(lán)圖。作者不僅扎實(shí)地構(gòu)建了時(shí)間序列分析的基礎(chǔ)知識(shí),更巧妙地展示
    發(fā)表于 08-12 11:21

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 了解時(shí)間序列

    收到《時(shí)間序列與機(jī)器學(xué)習(xí)》一書,彩色印刷,公式代碼清晰,非常精美。感謝作者,感謝電子發(fā)燒友提供一個(gè)讓我學(xué)習(xí)時(shí)間序列及應(yīng)用的機(jī)會(huì)! 前言第一段描述
    發(fā)表于 08-11 17:55

    機(jī)器學(xué)習(xí)的數(shù)據(jù)分割方法

    機(jī)器學(xué)習(xí),數(shù)據(jù)分割是一項(xiàng)至關(guān)重要的任務(wù),它直接影響到模型的訓(xùn)練效果、泛化能力以及最終的性能評(píng)估。本文將從多個(gè)方面詳細(xì)探討機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-10 16:10 ?2882次閱讀

    如何理解機(jī)器學(xué)習(xí)的訓(xùn)練集、驗(yàn)證集和測試集

    理解機(jī)器學(xué)習(xí)的訓(xùn)練集、驗(yàn)證集和測試集,是掌握機(jī)器學(xué)習(xí)核心概念和流程的重要一步。這三者不僅構(gòu)成了模型學(xué)習(xí)
    的頭像 發(fā)表于 07-10 15:45 ?6188次閱讀

    機(jī)器學(xué)習(xí)的數(shù)據(jù)預(yù)處理與特征工程

    機(jī)器學(xué)習(xí)的整個(gè)流程,數(shù)據(jù)預(yù)處理與特征工程是兩個(gè)至關(guān)重要的步驟。它們直接決定模型的輸入質(zhì)量,進(jìn)而影響模型的訓(xùn)練效果和泛化能力。本文將從數(shù)據(jù)預(yù)處理和特征工程的基本概念出發(fā),詳細(xì)探討這
    的頭像 發(fā)表于 07-09 15:57 ?1107次閱讀

    神經(jīng)網(wǎng)絡(luò)在數(shù)學(xué)建模的應(yīng)用

    數(shù)學(xué)建模是一種利用數(shù)學(xué)方法和工具來描述和分析現(xiàn)實(shí)世界問題的過程。神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)元結(jié)構(gòu)和功能的計(jì)算模型,可以用于解決各種復(fù)雜問題。在數(shù)學(xué)建模,神經(jīng)網(wǎng)絡(luò)可以作為一種有效的工具
    的頭像 發(fā)表于 07-02 11:29 ?1497次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析的應(yīng)用

    隨著大數(shù)據(jù)時(shí)代的到來,數(shù)據(jù)量的爆炸性增長對(duì)數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入
    的頭像 發(fā)表于 07-02 11:22 ?1201次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于
    的頭像 發(fā)表于 07-01 11:40 ?2149次閱讀
    主站蜘蛛池模板: 免费网站日本永久免费观看 | 婷婷激情六月 | 天天躁狠狠躁夜夜躁 | 亚洲一区视频在线 | 五月四房婷婷 | 久久亚洲精品国产精品婷婷 | 天天摸日日 | 欧美18同性gay视频 | 波多野结衣的毛片 | 热久久影院| 91九色蝌蚪在线 | 欧美三级午夜伦理片 | avtt天堂网永久资源 | 欧美一级一一特黄 | xxxx日本在线播放免费不卡 | 四虎永久在线精品国产 | 国产欧美日韩综合精品一区二区 | 色婷婷亚洲精品综合影院 | 国产一级特黄高清免费大片 | 天天视频在线观看免费 | 天堂在线www | 午夜日韩精品 | 你懂的网址在线观看 | 欧美成人性动漫在线观看 | 成在线人视频免费视频 | 4虎影院永久地址www | 自拍偷拍综合网 | www亚洲成人 | 免费视频精品 | 天天躁日日躁狠狠躁中文字幕老牛 | 国产69精品久久 | 国产成人精品系列在线观看 | 国产高清在线精品一区 | 黄色的视频网站 | 韩国a级床戏大尺度在线观看 | 国产日韩欧美一区二区 | 香蕉久久高清国产精品免费 | 国产免费播放 | 伊人精品久久久大香线蕉99 | 国产日韩三级 | 色麒麟影院 |