在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何對醫(yī)學(xué)圖像分割中的置信度進行量化?

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來源:通信信號處理研究所 ? 作者:通信信號處理研究 ? 2020-12-25 11:34 ? 次閱讀

在過去的十年里,深度學(xué)習(xí)在一系列的應(yīng)用中取得了巨大的成功。然而,為了驗證和可解釋性,我們不僅需要模型做出的預(yù)測,還需要知道它在做出預(yù)測時的置信度。這對于讓醫(yī)學(xué)影像學(xué)的臨床醫(yī)生接受它是非常重要的。在這篇博客中,我們展示了我們在韋洛爾理工學(xué)院進行的研究。我們使用了一個基于變分推理技術(shù)的編碼解碼架構(gòu)來分割腦腫瘤圖像。我們比較了U-Net、V-Net和FCN等不同的主干架構(gòu)作為編碼器的條件分布采樣數(shù)據(jù)。我們使用Dice相似系數(shù)(DSC)和IOU作為評價指標(biāo)來評價我們在公開數(shù)據(jù)集BRATS上的工作。

醫(yī)學(xué)圖像分割

在目前的文獻中主要利用兩種技術(shù)成功地解決了醫(yī)學(xué)圖像的分割問題,一種是利用全卷積網(wǎng)絡(luò)(FCN),另一種是基于U-Net的技術(shù)。FCN體系結(jié)構(gòu)的主要特點是在最后沒有使用已成功用于圖像分類問題的全連接層。另一方面,U-Net使用一種編碼器-解碼器架構(gòu),在編碼器中有池化層,在解碼器中有上采樣層。

貝葉斯神經(jīng)網(wǎng)絡(luò)

這是一種可擴展的避免神經(jīng)網(wǎng)絡(luò)過擬合的方法,同時也給了我們一個不確定性的度量。神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)給定的數(shù)據(jù)集的后驗分布的權(quán)重,而不是基于點的估計,如下面的公式所示。

14bfd374-4458-11eb-8b86-12bb97331649.png

預(yù)測分布可以通過逼近積分來計算,如下式所示。

1566cf08-4458-11eb-8b86-12bb97331649.png

變分推斷

變分推斷通過最大化證據(jù)下界來尋找分布的參數(shù)。ELBO由前后分布的Kullback-Leibler (KL)散度和負(fù)對數(shù)似然(NLL)兩項之和構(gòu)成。需要最小化的KL散度項如下式所示。

15977928-4458-11eb-8b86-12bb97331649.png

KL散度定義如下式。

1747fb58-4458-11eb-8b86-12bb97331649.png

由于上述方程中的積分在本質(zhì)上是難以處理的,它可以寫成另一種形式。該方程可轉(zhuǎn)化為優(yōu)化問題,如下式所示。

17741922-4458-11eb-8b86-12bb97331649.png

隨機不確定性和認(rèn)知不確定性

有兩種類型的不確定性 —— 隨機不確定性和認(rèn)知不確定性,其中方差是兩者的總和。對于最終的預(yù)測,單個的均值和方差可以估計,如下兩個方程所示。

17a3fca0-4458-11eb-8b86-12bb97331649.png

17de454a-4458-11eb-8b86-12bb97331649.png

方差中的第一項表示隨機不確定性,而第二項表示認(rèn)知不確定性。

網(wǎng)絡(luò)結(jié)構(gòu)

先驗分布有助于整合網(wǎng)絡(luò)上的權(quán)值學(xué)習(xí)。我們的模型使用了與VAEs中使用的類似的編碼器解碼器體系結(jié)構(gòu),編碼器的輸入來自預(yù)先訓(xùn)練好的圖像分割結(jié)構(gòu)。輸入到編碼器只需要表示置信度的條件分布的標(biāo)準(zhǔn)差向量的均值,以此來正確預(yù)測像素點。參數(shù)經(jīng)過編碼器后,被轉(zhuǎn)換為一個潛在表示,再采樣的平均值和標(biāo)準(zhǔn)偏差向量。解碼器隨后將其恢復(fù)到原始分布。采用傳統(tǒng)的反向傳播算法進行梯度下降模型的訓(xùn)練。本工作中使用的模型架構(gòu)如圖1所示:

1823af86-4458-11eb-8b86-12bb97331649.png

圖1:模型結(jié)構(gòu)

算法

下面是基于隨機梯度下降的訓(xùn)練網(wǎng)絡(luò)的算法。

184ef204-4458-11eb-8b86-12bb97331649.png

數(shù)據(jù)集

為了評估我們的網(wǎng)絡(luò)性能,我們使用BRATS18腦瘤分割數(shù)據(jù)集。它包含175名惡性膠質(zhì)瘤和低級別惡性膠質(zhì)瘤患者的MRI掃描。圖像分辨率為240×240×155像素。ground truth標(biāo)簽是由神經(jīng)放射學(xué)專家創(chuàng)建的。數(shù)據(jù)集的一個示例如圖2所示。

圖2:MRI切片的例子以及分割的ground truth

評估指標(biāo)

評價指標(biāo)為Dice相似系數(shù)(DSC),也稱F1-score和IoU。對應(yīng)的方程如下所示。

1923b476-4458-11eb-8b86-12bb97331649.png

1966d90e-4458-11eb-8b86-12bb97331649.png

損失函數(shù)

采用二元交叉熵和dice損失相結(jié)合的方法對網(wǎng)絡(luò)進行訓(xùn)練。第一部分二元交叉熵是分類問題中常用的損失函數(shù),如下式所示:

1b6e0920-4458-11eb-8b86-12bb97331649.png

二元交叉熵?fù)p失的問題在于它沒有考慮到類的不平衡,因為背景是占主導(dǎo)地位的類。dice損失解決了這個問題,可以寫成如下公式。

1bc27136-4458-11eb-8b86-12bb97331649.png

這兩個損失項被合并在一個項中,并給予dice損失項更多的權(quán)重,因為它能更好地處理類別不平衡問題。這是用下面的公式定義的。

1bfff01a-4458-11eb-8b86-12bb97331649.png

結(jié)果

分割所涉及的不確定性如圖3所示。深的顏色表示更自信,而淺的顏色表示模型在這些區(qū)域不太自信。

圖3:與ground truth分割相比,測試樣本上的模型預(yù)測示例。第一列:輸入圖像,第二列:真值分割,第三列:預(yù)測分割,第四列:隨機不確定性,第五列:認(rèn)知不確定性

總結(jié)

在這個博客中,我們提出了一種在醫(yī)學(xué)圖像分割中量化不確定性的方法。我們的模型基于一個類似于VAEs所使用的編碼器解碼器框架。網(wǎng)絡(luò)的權(quán)值代表分布而不是點估計,從而在進行預(yù)測的同時給出了一種原則性的測量不確定性的方法。編碼器的輸入來自于預(yù)訓(xùn)練的骨干架構(gòu),如U-Net, V-Net, FCN,這些架構(gòu)都是從條件分布中采樣的,代表了像素被正確標(biāo)記的置信度。我們在公開數(shù)據(jù)集BRATS上評估我們的結(jié)果,使用DSC和IOU指標(biāo),我們的網(wǎng)絡(luò)優(yōu)于以前的SOTA的結(jié)果。

原文標(biāo)題:解析丨對醫(yī)學(xué)圖像分割中的置信度進行量化

文章出處:【微信公眾號:通信信號處理研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:解析丨對醫(yī)學(xué)圖像分割中的置信度進行量化

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    如何修改yolov8分割程序的kmodel?

    ;#039;''實驗平臺:01Studio CanMV K230說明:實現(xiàn)攝像頭圖像采集顯示-裂縫分割-寬度計算'''
    發(fā)表于 04-25 08:22

    DLP4500連接HDMI進行視頻流傳輸模式下投影圖像底部出錯并閃爍,怎么解決?

    進行了代碼的編寫,其中相關(guān)配置信息參考了開發(fā)者手冊第64頁的內(nèi)容。測試發(fā)現(xiàn),投影儀可以投影出圖像并觸發(fā)攝像頭,但此時投影圖像中大約底部1/5的區(qū)域顯示不正常,是類似白色背景的圖案并會發(fā)
    發(fā)表于 02-19 08:04

    語義分割25種損失函數(shù)綜述和展望

    本綜述提供了對25種用于圖像分割的損失函數(shù)的全面且統(tǒng)一的回顧。我們提供了一種新穎的分類法,并詳細(xì)審查了這些損失函數(shù)如何在圖像分割中被定制和利用,強調(diào)了它們的重要特征和應(yīng)用,并
    的頭像 發(fā)表于 10-22 08:04 ?1520次閱讀
    語義<b class='flag-5'>分割</b>25種損失函數(shù)綜述和展望

    畫面分割器怎么連接

    器的基本原理 畫面分割器的工作原理是通過數(shù)字信號處理技術(shù),將多個視頻信號源(如攝像頭、DVR等)的圖像數(shù)據(jù)進行處理,然后在一個監(jiān)視器上以分割的形式顯示出來。這些
    的頭像 發(fā)表于 10-17 09:29 ?889次閱讀

    計算機視覺圖像融合

    在許多計算機視覺應(yīng)用(例如機器人運動和醫(yī)學(xué)成像),需要將多個圖像的相關(guān)信息整合到單一圖像。這種圖像
    的頭像 發(fā)表于 08-01 08:28 ?1069次閱讀
    計算機視覺<b class='flag-5'>中</b>的<b class='flag-5'>圖像</b>融合

    醫(yī)學(xué)影像存儲與傳輸系統(tǒng)源碼,PACS系統(tǒng)源碼

    ?醫(yī)學(xué)影像存儲與傳輸系統(tǒng),PACS部分主要提供醫(yī)學(xué)影像獲取、影像信息網(wǎng)絡(luò)傳遞、大容量數(shù)據(jù)存儲、影像顯示和處理、影像打印等功能。RIS主要提供分診登記、叫號、檢查報告生成和打印等功能。影像存儲與傳輸
    的頭像 發(fā)表于 07-18 16:31 ?670次閱讀
    <b class='flag-5'>醫(yī)學(xué)</b>影像存儲與傳輸系統(tǒng)源碼,PACS系統(tǒng)源碼

    圖像語義分割的實用性是什么

    圖像語義分割是一種重要的計算機視覺任務(wù),它旨在將圖像的每個像素分配到相應(yīng)的語義類別。這項技術(shù)在許多領(lǐng)域都有廣泛的應(yīng)用,如自動駕駛、
    的頭像 發(fā)表于 07-17 09:56 ?834次閱讀

    圖像分割和語義分割的區(qū)別與聯(lián)系

    、亮度等。圖像分割的目的是將圖像感興趣的部分與背景分離,以便進行進一步的處理和分析。 1.1 圖像
    的頭像 發(fā)表于 07-17 09:55 ?1778次閱讀

    圖像分割與目標(biāo)檢測的區(qū)別是什么

    的區(qū)別。 定義 圖像分割是將圖像劃分為若干個區(qū)域或?qū)ο蟮倪^程,這些區(qū)域或?qū)ο缶哂邢嗨频膶傩裕珙伾⒓y理或形狀。圖像分割的目的是將
    的頭像 發(fā)表于 07-17 09:53 ?2247次閱讀

    圖像識別技術(shù)在醫(yī)療領(lǐng)域的應(yīng)用

    的應(yīng)用已經(jīng)成為推動醫(yī)療技術(shù)發(fā)展的重要力量。 二、醫(yī)學(xué)影像診斷 醫(yī)學(xué)影像診斷是圖像識別技術(shù)在醫(yī)療領(lǐng)域應(yīng)用最為廣泛和成熟的領(lǐng)域之一。醫(yī)學(xué)影像診斷主要包括X射線、CT、MRI、超聲等影像技術(shù)
    的頭像 發(fā)表于 07-16 10:48 ?1929次閱讀

    機器學(xué)習(xí)的數(shù)據(jù)分割方法

    在機器學(xué)習(xí),數(shù)據(jù)分割是一項至關(guān)重要的任務(wù),它直接影響到模型的訓(xùn)練效果、泛化能力以及最終的性能評估。本文將從多個方面詳細(xì)探討機器學(xué)習(xí)數(shù)據(jù)分割的方法,包括常見的
    的頭像 發(fā)表于 07-10 16:10 ?3022次閱讀

    圖像分割與語義分割的CNN模型綜述

    圖像分割與語義分割是計算機視覺領(lǐng)域的重要任務(wù),旨在將圖像劃分為多個具有特定語義含義的區(qū)域或?qū)ο蟆>矸e神經(jīng)網(wǎng)絡(luò)(CNN)作為深度學(xué)習(xí)的一種核心模型,在
    的頭像 發(fā)表于 07-09 11:51 ?1807次閱讀

    機器人視覺技術(shù)中常見的圖像分割方法

    機器人視覺技術(shù)圖像分割方法是一個廣泛且深入的研究領(lǐng)域。圖像分割是將圖像劃分為多個區(qū)域或?qū)ο蟮?/div>
    的頭像 發(fā)表于 07-09 09:31 ?1288次閱讀

    機器人視覺技術(shù)圖像分割方法有哪些

    機器人視覺技術(shù)是人工智能領(lǐng)域的一個重要分支,它涉及到圖像處理、模式識別、機器學(xué)習(xí)等多個學(xué)科。圖像分割是機器人視覺技術(shù)的一個重要環(huán)節(jié),它的目標(biāo)是從一幅
    的頭像 發(fā)表于 07-04 11:34 ?1605次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在圖像醫(yī)學(xué)診斷的優(yōu)勢

    通過模擬人腦視覺皮層的工作機制,實現(xiàn)對圖像數(shù)據(jù)的高效處理,特別是在圖像分類、目標(biāo)檢測、圖像分割以及醫(yī)學(xué)
    的頭像 發(fā)表于 07-01 15:59 ?1975次閱讀
    主站蜘蛛池模板: 天天摸夜夜添夜夜添国产 | 免费网站在线视频美女被 | 欧日韩美香蕉在线观看 | 四虎影视亚洲精品 | 久久久精品午夜免费不卡 | 亚洲热热久久九九精品 | 天天操天天射天天舔 | 涩涩涩丁香色婷五月网视色 | 天天色天天摸 | 高h道具触手play肉男男 | 色色免费 | 黄色录像视频网站 | 久综合| 成人午夜免费视频毛片 | 午夜精品aaa国产福利 | 你懂的手机在线 | 欧美不卡视频在线 | 99久久综合狠狠综合久久男同 | 亚洲免费资源 | 久久精品乱子伦观看 | 高清欧美性xxxx成熟 | 经典三级一区二区三区视频 | 无遮挡很爽很污很黄在线网站 | 亚洲第一色在线 | 视频一区二区三区在线观看 | 在线视频观看免费 | 亚洲激情网站 | 速度与激情在线 | 在线观看播放视频www | 在线播放亚洲视频 | 成人夜夜嗨 | 国产女同| 色视频在线免费看 | 国产精品天天在线 | 一区二区三区四区无限乱码在线观看 | 黄网在线免费看 | 午夜久久久精品 | 狠狠色欧美亚洲狠狠色www | 天天干天天碰 | 欧美色淫 | 综合网在线观看 |