在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

視覺SLAM技術(shù)以及其應用詳解

傳感器技術(shù) ? 2018-01-09 13:09 ? 次閱讀

當今科技發(fā)展速度飛快,想讓用戶在AR/VR機器人無人機無人駕駛領域體驗加強,還是需要更多前沿技術(shù)做支持,SLAM就是其中之一。實際上,有人就曾打比方,若是手機離開了WIFI和數(shù)據(jù)網(wǎng)絡,就像無人車和機器人,離開了SLAM一樣。

什么是SLAM

SLAM的英文全稱是 Simultaneous Localization and Mapping,中文稱作「同時定位與地圖創(chuàng)建」。

SLAM試圖解決這樣的問題:一個機器人在未知的環(huán)境中運動,如何通過對環(huán)境的觀測確定自身的運動軌跡,同時構(gòu)建出環(huán)境的地圖。SLAM技術(shù)正是為了實現(xiàn)這個目標涉及到的諸多技術(shù)的總和。

SLAM通常包括如下幾個部分,特征提取,數(shù)據(jù)關(guān)聯(lián),狀態(tài)估計,狀態(tài)更新以及特征更新等。

我們引用知乎上的一個解釋把它翻譯成大白話,就是:

當你來到一個陌生的環(huán)境時,為了迅速熟悉環(huán)境并完成自己的任務(比如找飯館,找旅館),你應當做以下事情:

a.用眼睛觀察周圍地標如建筑、大樹、花壇等,并記住他們的特征(特征提取)

b.在自己的腦海中,根據(jù)雙目獲得的信息,把特征地標在三維地圖中重建出來(三維重建)

c.當自己在行走時,不斷獲取新的特征地標,并且校正自己頭腦中的地圖模型(bundle adjustment or EKF)

d.根據(jù)自己前一段時間行走獲得的特征地標,確定自己的位置(trajectory)

e.當無意中走了很長一段路的時候,和腦海中的以往地標進行匹配,看一看是否走回了原路(loop-closure detection)。實際這一步可有可無。

以上五步是同時進行的,因此是simultaneous localization and mapping.

傳感器與視覺SLAM框架

智能機器人技術(shù)在世界范圍內(nèi)得到了大力發(fā)展。人們致力于把機器人用于實際場景:從室內(nèi)的移動機器人,到野外的自動駕駛汽車、空中的無人機、水下環(huán)境的探測機器人等等,均得到了廣泛的關(guān)注。

沒有準確的定位與地圖,掃地機就無法在房間自主地移動,只能隨機亂碰;家用機器人就無法按照指令準確到達某個房間。此外,在虛擬現(xiàn)實(Virtual Reality)和增強現(xiàn)實技術(shù)(Argument Reality)中,沒有SLAM提供的定位,用戶就無法在場景中漫游。在這幾個應用領域中,人們需要SLAM向應用層提供空間定位的信息,并利用SLAM的地圖完成地圖的構(gòu)建或場景的生成。

當我們談論SLAM時,最先問到的就是傳感器。SLAM的實現(xiàn)方式與難度和傳感器的形式與安裝方式密切相關(guān)。傳感器分為激光和視覺兩大類,視覺下面又分三小方向。下面就帶你認識這個龐大家族中每個成員的特性。

1. 傳感器之激光雷達

激光雷達是最古老,研究也最多的SLAM傳感器。它們提供機器人本體與周圍環(huán)境障礙物間的距離信息。常見的激光雷達,例如SICK、Velodyne還有我們國產(chǎn)的rplidar等,都可以拿來做SLAM。激光雷達能以很高精度測出機器人周圍障礙點的角度和距離,從而很方便地實現(xiàn)SLAM、避障等功能。

主流的2D激光傳感器掃描一個平面內(nèi)的障礙物,適用于平面運動的機器人(如掃地機等)進行定位,并建立2D的柵格地圖。這種地圖在機器人導航中很實用,因為多數(shù)機器人還不能在空中飛行或走上臺階,仍限于地面。在SLAM研究史上,早期SLAM研究幾乎全使用激光傳感器進行建圖,且多數(shù)使用濾波器方法,例如卡爾曼濾波器與粒子濾波器等。

激光的優(yōu)點是精度很高,速度快,計算量也不大,容易做成實時SLAM。缺點是價格昂貴,一臺激光動輒上萬元,會大幅提高一個機器人的成本。因此激光的研究主要集中于如何降低傳感器的成本上。對應于激光的EKF-SLAM理論方面,因為研究較早,現(xiàn)在已經(jīng)非常成熟。與此同時,人們也對EKF-SLAM的缺點也有較清楚的認識,例如不易表示回環(huán)、線性化誤差嚴重、必須維護路標點的協(xié)方差矩陣,導致一定的空間與時間的開銷,等等。

2.、傳感器之視覺SLAM

視覺SLAM是21世紀SLAM研究熱點之一,一方面是因為視覺十分直觀,不免令人覺得:為何人能通過眼睛認路,機器人就不行呢?另一方面,由于CPUGPU處理速度的增長,使得許多以前被認為無法實時化的視覺算法,得以在10 Hz以上的速度運行。硬件的提高也促進了視覺SLAM的發(fā)展。

以傳感器而論,視覺SLAM研究主要分為三大類:單目、雙目(或多目)、RGBD。其余還有魚眼、全景等特殊相機,但是在研究和產(chǎn)品中都屬于少數(shù)。此外,結(jié)合慣性測量器件(Inertial Measurement Unit,IMU)的視覺SLAM也是現(xiàn)在研究熱點之一。就實現(xiàn)難度而言,我們可以大致將這三類方法排序為:單目視覺>雙目視覺>RGBD。

單目相機SLAM簡稱MonoSLAM,即只用一支攝像頭就可以完成SLAM。這樣做的好處是傳感器特別的簡單、成本特別的低,所以單目SLAM非常受研究者關(guān)注。相比別的視覺傳感器,單目有個最大的問題,就是沒法確切地得到深度。這是一把雙刃劍。

一方面,由于絕對深度未知,單目SLAM沒法得到機器人運動軌跡以及地圖的真實大小。直觀地說,如果把軌跡和房間同時放大兩倍,單目看到的像是一樣的。因此,單目SLAM只能估計一個相對深度,在相似變換空間Sim(3)中求解,而非傳統(tǒng)的歐氏空間SE(3)。如果我們必須要在SE(3)中求解,則需要用一些外部的手段,例如GPS、IMU等傳感器,確定軌跡與地圖的尺度(Scale)。

另一方面,單目相機無法依靠一張圖像獲得圖像中物體離自己的相對距離。為了估計這個相對深度,單目SLAM要靠運動中的三角測量,來求解相機運動并估計像素的空間位置。即是說,它的軌跡和地圖,只有在相機運動之后才能收斂,如果相機不進行運動時,就無法得知像素的位置。同時,相機運動還不能是純粹的旋轉(zhuǎn),這就給單目SLAM的應用帶來了一些麻煩,好在日常使用SLAM時,相機都會發(fā)生旋轉(zhuǎn)和平移。不過,無法確定深度同時也有一個好處:它使得單目SLAM不受環(huán)境大小的影響,因此既可以用于室內(nèi),又可以用于室外。

相比于單目,雙目相機通過多個相機之間的基線,估計空間點的位置。與單目不同的是,立體視覺既可以在運動時估計深度,亦可在靜止時估計,消除了單目視覺的許多麻煩。不過,雙目或多目相機配置與標定均較為復雜,其深度量程也隨雙目的基線與分辨率限制。通過雙目圖像計算像素距離,是一件非常消耗計算量的事情,現(xiàn)在多用FPGA來完成。

RGBD相機是2010年左右開始興起的一種相機,它最大的特點是可以通過紅外結(jié)構(gòu)光或Time-of-Flight原理,直接測出圖像中各像素離相機的距離。因此,它比傳統(tǒng)相機能夠提供更豐富的信息,也不必像單目或雙目那樣費時費力地計算深度。目前常用的RGBD相機包括Kinect/Kinect V2、Xtion等。不過,現(xiàn)在多數(shù)RGBD相機還存在測量范圍窄、噪聲大、視野小等諸多問題。出于量程的限制,主要用于室內(nèi)SLAM。

SLAM框架之視覺里程計

視覺SLAM幾乎都有一個基本的框架。一個SLAM系統(tǒng)分為四個模塊(除去傳感器數(shù)據(jù)讀取):VO、后端、建圖、回環(huán)檢測。

Visual Odometry,即視覺里程計。它估計兩個時刻機器人的相對運動(Ego-motion)。在激光SLAM中,我們可以將當前的觀測與全局地圖進行匹配,用ICP求解相對運動。而對于相機,它在歐氏空間里運動,我們經(jīng)常需要估計一個三維空間的變換矩陣——SE3或Sim3(單目情形)。求解這個矩陣是VO的核心問題,而求解的思路,則分為基于特征的思路和不使用特征的直接方法。

特征匹配

基于特征的方法是目前VO的主流方式。對于兩幅圖像,首先提取圖像中的特征,然后根據(jù)兩幅圖的特征匹配,計算相機的變換矩陣。最常用的是點特征,例如Harris角點、SIFT、SURF、ORB。如果使用RGBD相機,利用已知深度的特征點,就可以直接估計相機的運動。給定一組特征點以及它們之間的配對關(guān)系,求解相機的姿態(tài),該問題被稱為PnP問題(Perspective-N-Point)。PnP可以用非線性優(yōu)化來求解,得到兩個幀之間的位置關(guān)系。

不使用特征進行VO的方法稱為直接法。它直接把圖像中所有像素寫進一個位姿估計方程,求出幀間相對運動。例如,在RGBD SLAM中,可以用ICP(Iterative Closest Point,迭代最近鄰)求解兩個點云之間的變換矩陣。對于單目SLAM,我們可以匹配兩個圖像間的像素,或者像圖像與一個全局的模型相匹配。直接法的典型例子是SVO和LSD-SLAM。它們在單目SLAM中使用直接法,取得了較好的效果。目前看來,直接法比特征VO需要更多的計算量,而且對相機的圖像采集速率也有較高的要求。

SLAM框架之后端

在VO估計幀間運動之后,理論上就可以得到機器人的軌跡了。然而視覺里程計和普通的里程計一樣,存在累積誤差的問題(Drift)。直觀地說,在t1和t2時刻,估計的轉(zhuǎn)角比真實轉(zhuǎn)角少1度,那么之后的軌跡就全部少掉了這1度。時間一長,建出的房間可能由方形變成了多邊形,估計出的軌跡亦會有嚴重的漂移。所以在SLAM中,還會把幀間相對運動放到一個稱之為后端的程序中進行加工處理。

早期的SLAM后端使用濾波器方式。由于那時還未形成前后端的概念,有時人們也稱研究濾波器的工作為研究SLAM。SLAM最早的提出者R. Smith等人就把SLAM建構(gòu)成了一個EKF(Extended Kalman Filter,擴展卡爾曼濾波)問題。他們按照EKF的形式,把SLAM寫成了一個運動方程和觀測方式,以最小化這兩個方程中的噪聲項為目的,使用典型的濾波器思路來解決SLAM問題。

當一個幀到達時,我們能(通過碼盤或IMU)測出該幀與上一幀的相對運動,但是存在噪聲,是為運動方程。同時,通過傳感器對路標的觀測,我們測出了機器人與路標間的位姿關(guān)系,同樣也帶有噪聲,是為觀測方程。通過這兩者信息,我們可以預測出機器人在當前時刻的位置。同樣,根據(jù)以往記錄的路標點,我們又能計算出一個卡爾曼增益,以補償噪聲的影響。于是,對當前幀和路標的估計,即是這個預測與更新的不斷迭代的過程。

21世紀之后,SLAM研究者開始借鑒SfM(Structure from Motion)問題中的方法,把捆集優(yōu)化(Bundle Adjustment)引入到SLAM中來。優(yōu)化方法和濾波器方法有根本上的不同。它并不是一個迭代的過程,而是考慮過去所有幀中的信息。通過優(yōu)化,把誤差平均分到每一次觀測當中。在SLAM中的Bundle Adjustment常常以圖的形式給出,所以研究者亦稱之為圖優(yōu)化方法(Graph Optimization)。圖優(yōu)化可以直觀地表示優(yōu)化問題,可利用稀疏代數(shù)進行快速的求解,表達回環(huán)也十分的方便,因而成為現(xiàn)今視覺SLAM中主流的優(yōu)化方法。

SLAM框架之回環(huán)檢測

回環(huán)檢測,又稱閉環(huán)檢測(Loop closure detection),是指機器人識別曾到達場景的能力。如果檢測成功,可以顯著地減小累積誤差。回環(huán)檢測實質(zhì)上是一種檢測觀測數(shù)據(jù)相似性的算法。對于視覺SLAM,多數(shù)系統(tǒng)采用目前較為成熟的詞袋模型(Bag-of-Words, BoW)。詞袋模型把圖像中的視覺特征(SIFT, SURF等)聚類,然后建立詞典,進而尋找每個圖中含有哪些“單詞”(word)。也有研究者使用傳統(tǒng)模式識別的方法,把回環(huán)檢測建構(gòu)成一個分類問題,訓練分類器進行分類。

回環(huán)檢測的難點在于,錯誤的檢測結(jié)果可能使地圖變得很糟糕。這些錯誤分為兩類:1.假陽性(False Positive),又稱感知偏差(Perceptual Aliasing),指事實上不同的場景被當成了同一個;2.假陰性(False Negative),又稱感知變異(Perceptual Variability),指事實上同一個場景被當成了兩個。感知偏差會嚴重地影響地圖的結(jié)果,通常是希望避免的。一個好的回環(huán)檢測算法應該能檢測出盡量多的真實回環(huán)。研究者常常用準確率-召回率曲線來評價一個檢測算法的好壞。

SLAM技術(shù)目前主要應用在哪些領域?

目前,SLAM(即時定位與地圖構(gòu)建)技術(shù)主要被運用于無人機、無人駕駛、機器人、AR、智能家居等領域,從各應用場景入手,促進消費升級。

機器人

激光+SLAM是目前機器人自主定位導航所使用的主流技術(shù)。激光測距相比較于圖像和超聲波測距,具有良好的指向性和高度聚焦性,是目前最可靠、穩(wěn)定的定位技術(shù)。激光雷達傳感器獲取地圖信息,構(gòu)建地圖,實現(xiàn)路徑規(guī)劃與導航。

無人駕駛

無人駕駛是近年來較火的話題之一,Google、Uber、百度等企業(yè)都在加速研發(fā)無人駕駛相關(guān)技術(shù),搶占先機。

隨著城市物聯(lián)網(wǎng)和智能系統(tǒng)的完善,無人駕駛必是大勢所趨。無人駕駛利用激光雷達傳感器(Velodyne、IBEO等)作為工具,獲取地圖數(shù)據(jù),并構(gòu)建地圖,規(guī)避路程中遇到的障礙物,實現(xiàn)路徑規(guī)劃。跟SLAM技術(shù)在機器人領域的應用類似,只是相比較于SLAM在機器人中的應用,無人駕駛的雷達要求和成本要明顯高于機器人。

無人機

無人機在飛行的過程中需要知道哪里有障礙物,該怎么規(guī)避,怎么重新規(guī)劃路線。顯然,這是SLAM技術(shù)的應用。但無人機飛行的范圍較大,所以對精度的要求不高,市面上其他的一些光流、超聲波傳感器可以作為輔助。

AR

AR通過電腦技術(shù),將虛擬的信息應用到真實世界,真實的環(huán)境和虛擬的物體實時地疊加到了同一個畫面或空間同時存在。這一畫面的實現(xiàn),離不開SLAM技術(shù)的實時定位。雖然在AR行業(yè)有很多可代替技術(shù),但是,SLAM技術(shù)是最理想的定位導航技術(shù)。

相較于SLAM在機器人、無人駕駛等領域的應用,在AR行業(yè)的應用則有很多不同點。

1、精度上:AR一般更關(guān)注于局部精度,要求恢復的相機運動避免出現(xiàn)漂移、抖動,這樣疊加的虛擬物體才能看起來與現(xiàn)實場景真實地融合在一起。但在機器人和無人駕駛領域則一般更關(guān)注全局精度,需要恢復的整條運動軌跡誤差累積不能太大,循環(huán)回路要能閉合,而在某個局部的漂移、 抖動等問題往往對機器人應用來說影響不大。

2、效率上:AR需要在有限的計算資源下實時求解,人眼的刷新率為24幀,所以AR的計算效率通常需要到達30幀以上; 機器人本身運動就很慢,可以把幀率降低,所以對算法效率的要求相對較低。

3、配置上:AR對硬件的體積、功率、成本等問題比機器人更敏感,比如機器人上可以配置魚眼、雙目或深度攝像頭、高性能CPU等硬件來降低SLAM的難度,而AR應用更傾向于采用更為高效、魯邦的算法達到需求。

多傳感器融合、優(yōu)化數(shù)據(jù)關(guān)聯(lián)與回環(huán)檢測、與前端異構(gòu)處理器集成、提升魯棒性和重定位精度都是SLAM技術(shù)接下來的發(fā)展方向,但這些都會隨著消費刺激和產(chǎn)業(yè)鏈的發(fā)展逐步解決。就像手機中的陀螺儀一樣,在不久的將來,也會飛入尋常百姓家,改變?nèi)祟惖纳睢?/p>

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2560

    文章

    52054

    瀏覽量

    760741
  • 機器人
    +關(guān)注

    關(guān)注

    212

    文章

    29167

    瀏覽量

    210618
  • SLAM
    +關(guān)注

    關(guān)注

    23

    文章

    430

    瀏覽量

    32218
  • 無人駕駛
    +關(guān)注

    關(guān)注

    98

    文章

    4123

    瀏覽量

    122221

原文標題:視覺SLAM技術(shù)

文章出處:【微信號:WW_CGQJS,微信公眾號:傳感器技術(shù)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    一種基于點、線和消失點特征的單目SLAM系統(tǒng)設計

    本文提出了一種穩(wěn)健的單目視覺SLAM系統(tǒng),該系統(tǒng)同時利用點、線和消失點特征來進行精確的相機位姿估計和地圖構(gòu)建,有效解決了傳統(tǒng)基于點特征的SLAM的局限性。
    的頭像 發(fā)表于 03-21 17:07 ?247次閱讀
    一種基于點、線和消失點特征的單目<b class='flag-5'>SLAM</b>系統(tǒng)設計

    一種基于MASt3R的實時稠密SLAM系統(tǒng)

    本文提出了一種即插即用的單目SLAM系統(tǒng),能夠在15FPS的幀率下生成全局一致的位姿和稠密幾何圖形。 01 ? 本文核心內(nèi)容 視覺SLAM乃是當今機器人技術(shù)與增強現(xiàn)實產(chǎn)品的基礎性構(gòu)建模
    的頭像 發(fā)表于 12-27 15:25 ?941次閱讀

    用于任意排列多相機的通用視覺里程計系統(tǒng)

    如何讓多相機視覺SLAM系統(tǒng)更易于部署且對環(huán)境更具魯棒性?本文提出了一種適用于任意排列多相機的通用視覺里程計系統(tǒng)。在KITTI-360和MultiCamData數(shù)據(jù)集上驗證了該方法對于任意放置相機的魯棒性。與其他立體和多相機
    的頭像 發(fā)表于 12-13 11:22 ?563次閱讀
    用于任意排列多相機的通用<b class='flag-5'>視覺</b>里程計系統(tǒng)

    利用VLM和MLLMs實現(xiàn)SLAM語義增強

    語義同步定位與建圖(SLAM)系統(tǒng)在對鄰近的語義相似物體進行建圖時面臨困境,特別是在復雜的室內(nèi)環(huán)境中。本文提出了一種面向?qū)ο?b class='flag-5'>SLAM的語義增強(SEO-SLAM)的新型SLAM系統(tǒng),借
    的頭像 發(fā)表于 12-05 10:00 ?778次閱讀
    利用VLM和MLLMs實現(xiàn)<b class='flag-5'>SLAM</b>語義增強

    常見室內(nèi)定位技術(shù)詳解及其發(fā)展

    ?常見的室內(nèi)定位技術(shù)主要包括紅外線定位、超聲波定位、射頻識別(RFID)定位、超寬帶(UWB)定位、WiFi定位、藍牙定位等?。以下是這些技術(shù)詳解及其發(fā)展概述: ?紅外線定位
    的頭像 發(fā)表于 11-15 18:09 ?846次閱讀

    最新圖優(yōu)化框架,全面提升SLAM定位精度

    同時定位與地圖構(gòu)建(SLAM)是一項關(guān)鍵技術(shù),允許移動機器人在部分或完全未知的環(huán)境中自主導航。它包括使用機載傳感器同時估計機器人狀態(tài)和構(gòu)建傳感器檢測到的環(huán)境地圖。SLAM可以根據(jù)傳感器和地圖構(gòu)建
    的頭像 發(fā)表于 11-12 11:26 ?941次閱讀
    最新圖優(yōu)化框架,全面提升<b class='flag-5'>SLAM</b>定位精度

    激光雷達在SLAM算法中的應用綜述

    一、文章概述 1.1 摘 要 即時定位與地圖構(gòu)建(simultaneous localization and mapping,SLAM)是自主移動機器人和自動駕駛的關(guān)鍵 技術(shù)之一,而激光雷達則是支撐
    的頭像 發(fā)表于 11-12 10:30 ?1920次閱讀
    激光雷達在<b class='flag-5'>SLAM</b>算法中的應用綜述

    MG-SLAM:融合結(jié)構(gòu)化線特征優(yōu)化高斯SLAM算法

    同步定位與地圖構(gòu)建 (SLAM) 是計算機視覺中的一個基本問題,旨在在同時跟蹤相機姿勢的同時對環(huán)境進行地圖構(gòu)建。基于學習的密集 SLAM 方法,尤其是神經(jīng)輻射場 (NeRF) 方法,在捕獲密集光度
    的頭像 發(fā)表于 11-11 16:17 ?657次閱讀
    MG-<b class='flag-5'>SLAM</b>:融合結(jié)構(gòu)化線特征優(yōu)化高斯<b class='flag-5'>SLAM</b>算法

    從算法角度看 SLAM(第 2 部分)

    作者: Aswin S Babu 正如我們在[第 1 部分]中所討論的,SLAM 是指在無地圖區(qū)域中估計機器人車輛的位置,同時逐步繪制該區(qū)域地圖的過程。根據(jù)使用的主要技術(shù)SLAM 算法可分為三種
    的頭像 發(fā)表于 10-02 16:39 ?598次閱讀
    從算法角度看 <b class='flag-5'>SLAM</b>(第 2 部分)

    一種適用于動態(tài)環(huán)境的實時視覺SLAM系統(tǒng)

    既能保證效率和精度,又無需GPU,行業(yè)第一個達到此目標的視覺動態(tài)SLAM系統(tǒng)。
    的頭像 發(fā)表于 09-30 14:35 ?887次閱讀
    一種適用于動態(tài)環(huán)境的實時<b class='flag-5'>視覺</b><b class='flag-5'>SLAM</b>系統(tǒng)

    機器視覺圖像采集卡及其使用接口概述

    本文我們將研究機器視覺圖像采集器及其使用的各種接口。首先,我們將概述外圍計算機卡,然后探討圖像采集器中使用的不同類型的機器視覺接口。讓我們從一個常見的問題開始:什么是外圍計算機卡,以及
    的頭像 發(fā)表于 06-27 18:15 ?766次閱讀
    機器<b class='flag-5'>視覺</b>圖像采集卡<b class='flag-5'>及其</b>使用接口概述

    機器視覺技術(shù)在工業(yè)自動化中的應用

    進行采集、處理和分析,從而實現(xiàn)對目標進行識別、檢測、測量和控制的功能。本文將從機器視覺技術(shù)的定義、原理、特點及其在工業(yè)自動化中的應用等方面進行詳細闡述。
    的頭像 發(fā)表于 06-17 10:22 ?1191次閱讀

    深度解析深度學習下的語義SLAM

    隨著深度學習技術(shù)的興起,計算機視覺的許多傳統(tǒng)領域都取得了突破性進展,例如目標的檢測、識別和分類等領域。近年來,研究人員開始在視覺SLAM算法中引入深度學習
    發(fā)表于 04-23 17:18 ?1645次閱讀
    深度解析深度學習下的語義<b class='flag-5'>SLAM</b>

    基于多攝像頭的高魯棒性視覺SLAM系統(tǒng)設計

    本文的主要目標是通過擴展ORB-SLAM2的功能來增強準確性,從多個攝像頭中的姿態(tài)估計和地圖重用開始。所有這些多攝像頭的圖像特征將被合并到跟蹤模塊中進行特征匹配,以及在閉環(huán)檢測期間進行位置識別。
    發(fā)表于 04-20 17:51 ?937次閱讀
    基于多攝像頭的高魯棒性<b class='flag-5'>視覺</b><b class='flag-5'>SLAM</b>系統(tǒng)設計
    主站蜘蛛池模板: 国产区一区二区三 | a亚洲天堂| 性欧美高清极品猛交 | 国产成人三级视频在线观看播放 | 欧美三级成人 | 国产精品欧美久久久久天天影视 | 日处女穴| 色综合网天天综合色中文男男 | 久久精品久噜噜噜久久 | 网站四虎1515hhcom | 狠狠色噜噜综合社区 | 午夜精品福利影院 | 激情综合色综合久久综合 | 四虎www成人影院免费观看 | 免费看的一级毛片 | 欧美97色 | 精品国产免费久久久久久婷婷 | 特黄aaaaa日本大片免费看 | 国产欧美日韩综合精品无毒 | 五月天天色 | 两性色午夜视频免费老司机 | 手机看片国产精品 | 狠狠色狠狠色狠狠五月ady | 天天狠狠弄夜夜狠狠躁·太爽了 | 亚洲一卡2卡3卡4卡5卡乱码 | 白嫩美女在线啪视频观看 | 婷婷深爱网 | 免费国产综合视频在线看 | 欧美日韩精品一区二区另类 | 天天鲁天天爽天天视频 | 黄色三级视频网站 | 农村妇女高清毛片一级 | 黄色免费网站在线播放 | 色噜噜狠狠大色综合 | 午夜免费理论片在线看 | 午夜视频在线观看完整高清在线 | 日本一区视频在线播放 | 羞羞漫画喷水漫画yy漫画 | 五月婷婷电影 | 国产一级做a爰片久久毛片男 | 日本暴力喉深到呕吐hd |