91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何讓人工智能和人類醫(yī)生一起,實現(xiàn)任何單一方都無法提供的臨床效果

DPVg_AI_era ? 來源:未知 ? 作者:李倩 ? 2018-04-03 17:17 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在多個研究中,人工智能已經(jīng)成功擊敗人類醫(yī)生,但在大規(guī)模落地前,醫(yī)療人工智能還有很多課要補。行業(yè)的狂歡和泡沫,是任何一個新技術(shù)浪潮的必經(jīng)之路。最后勝出的,必是那些創(chuàng)造了真實價值的技術(shù)和產(chǎn)品。

在2017年那場史詩級的圍棋對決中,人類戰(zhàn)力最強的棋手柯潔以0∶3敗于阿爾法狗,人類終被自己的模仿品——人工智能(AI)超越。接下來,它會在哪個領(lǐng)域戰(zhàn)勝人類?猜測落在醫(yī)療上。

人工智能在多個醫(yī)療細(xì)分領(lǐng)域曾與人類醫(yī)生交手,2016年5月至今,比分結(jié)果是AI 6勝、3平、2負(fù)。醫(yī)生已然落于下風(fēng)。

2017年歲末,斯坦福大學(xué)教授吳恩達(dá)領(lǐng)導(dǎo)的機器學(xué)習(xí)小組開發(fā)出一種名為CheXnet的算法,能夠更敏銳地捕捉胸部X光片中的肺炎跡象,在診斷肺炎的比拼中,也一舉擊敗四名放射科醫(yī)師。

這些火種足以讓產(chǎn)業(yè)界信心爆棚。谷歌、IBM、英特爾等國際巨頭和國內(nèi)的“BATK”(百度、阿里、騰訊、科大訊飛),都加緊布局,一大批初創(chuàng)公司也噴涌而出。

人口老齡化加劇、慢性病患者群體增長、優(yōu)質(zhì)醫(yī)療資源緊缺、公共醫(yī)療費用攀升等多重壓力,使AI入醫(yī)療被寄望成為這一全球性壓力的泄壓閥。泄出的壓力也正是機遇的源頭。尤其在中國,人口數(shù)量成為優(yōu)勢,醫(yī)療數(shù)據(jù)的基礎(chǔ)大,可以給醫(yī)療AI提供充沛的燃料。業(yè)內(nèi)的普遍看法是,在該領(lǐng)域,國內(nèi)企業(yè)有彎道超車的機會。

然而,AI的泡沫已然吹起,醫(yī)療能否獨善其身?這將取決于研究成果能否盡快進(jìn)入臨床,并獲得大范圍應(yīng)用,給醫(yī)療帶來切實改進(jìn),以撐起領(lǐng)域公司的估值,沖破“C輪死”的魔咒。

向醫(yī)生的主場滲透

擊敗四名放射科醫(yī)師,CheXnet只經(jīng)歷了一個月的診斷學(xué)習(xí)。

AI已經(jīng)在預(yù)測中風(fēng)和心臟病發(fā)作、預(yù)測嬰兒自閉癥的風(fēng)險上表現(xiàn)出明顯優(yōu)勢;在外科手術(shù)和阿爾茨海默病預(yù)測中略勝一籌;在治療腦腫瘤、先天性白內(nèi)障診斷和皮膚癌診斷上,跟人類醫(yī)生打平。“這些示范性的案例,就是一輪又一輪大額度融資的信心來源。”億歐智庫醫(yī)療產(chǎn)業(yè)分析師尚鞅告訴《財經(jīng)》記者。過去一年,資本對醫(yī)療AI的熱情展露得非常明顯,因為落地的可能性被印證了。

此前的人機對戰(zhàn)都在研發(fā)階段,直到一年前,美國批準(zhǔn)了第一個用于臨床的醫(yī)療AI產(chǎn)品,它可以分析心臟核磁共振圖像,準(zhǔn)確度可與有經(jīng)驗的醫(yī)生相媲美。進(jìn)入臨床,是AI向產(chǎn)業(yè)化邁進(jìn)的一大步。

2017年,國內(nèi)醫(yī)療AI行業(yè)公布的融資事件近30起,融資總額超過18億元。融資額最高的一筆是AI醫(yī)學(xué)影像公司匯醫(yī)慧影數(shù)億元B輪融資。

“能夠在如此短時間內(nèi)讓投資界集體高潮,一定是出現(xiàn)了商機。”易凱資本有限公司健康產(chǎn)業(yè)組聯(lián)席負(fù)責(zé)人李鋼分析。

就醫(yī),最核心的部分是診斷。替代醫(yī)生診斷,是醫(yī)療AI的一個終極目標(biāo)。現(xiàn)階段的小目標(biāo)是,能夠讓AI為醫(yī)生的診斷及治療方案提供建議,輔助診療。

如何讓人工智能和人類醫(yī)生一起,實現(xiàn)任何單一方都無法提供的臨床效果,才是關(guān)鍵。

AI輔助醫(yī)生做事,先從那些繁瑣的、重復(fù)性工作起步,提升診療效率。企業(yè)和研究團隊分頭趟開兩條路:一條基于自然語言處理,根據(jù)病歷和癥狀診斷疾病;一條基于計算機視覺,通過識別醫(yī)學(xué)影像診斷疾病。

IBM公司開發(fā)的“沃森”(Watson),是第一條路徑代表。它四年學(xué)習(xí)了200本腫瘤教科書、290種醫(yī)學(xué)期刊和超過1500萬份的文獻(xiàn)后,嘗試在14個國家的多個腫瘤治療中心臨床應(yīng)用。在輸入患者的年齡、性別、體重等基本情況和癌癥分期、局部復(fù)發(fā)、化療方案、病理分期、癌癥轉(zhuǎn)移等具體內(nèi)容后,短短十多秒,沃森就會給出治療方案,在肺癌、乳腺癌、直腸癌、結(jié)腸癌、胃癌和宮頸癌等方面為醫(yī)生提供診斷建議。

腫瘤醫(yī)生的智能助手沃森落地中國非常迅速,其國內(nèi)代理商——百洋智能科技在去年5月曾透露,一年內(nèi)將有150家地市級的三級綜合醫(yī)院引進(jìn)沃森。然而,沃森面臨的問題是,雖然速度快,但給出的解決方案可能還不是最好的。

第二條路徑,AI可將復(fù)雜、高維度的醫(yī)學(xué)影像數(shù)據(jù),降維使其更易處理,因而可以快速、準(zhǔn)確地從醫(yī)學(xué)影像中發(fā)現(xiàn)病癥的信息,輔助醫(yī)生診斷。

醫(yī)學(xué)影像在醫(yī)療數(shù)據(jù)總量中占比約80%,包括CT、核磁、超聲、病理、內(nèi)窺鏡、眼底等,因而,醫(yī)學(xué)影像的計算機處理向來是一個龐大的產(chǎn)業(yè)。

全球知名風(fēng)投調(diào)研機構(gòu)CB Insights對美國106家醫(yī)療AI初創(chuàng)企業(yè)分析顯示,影像和診斷成為資本熱涌的重點領(lǐng)域。IBM和阿爾法狗的開發(fā)者DeepMind都在推進(jìn)AI醫(yī)學(xué)影像的應(yīng)用,阿里、騰訊也不甘人后。

實際上,AI的觸角已無處不在。運用語音識別和自然語言理解,醫(yī)生在診療過程中即可完成病歷編寫,能提高醫(yī)生工作效率,美國大概有72%的醫(yī)院已經(jīng)實現(xiàn)用語音收集醫(yī)療信息,科大訊飛、云知聲等均有此項業(yè)務(wù)。

一些初創(chuàng)公司,還喜歡擠入慢性病管理,即運用人工智能算法,對慢性病患者進(jìn)行實時健康監(jiān)測及干預(yù),甚至據(jù)此生成健康管理建議,主要針對糖尿病、心血管病等需要即時干預(yù)的慢性病患者。

而一年多前,很多一線醫(yī)生還不知道AI這個字母組合是什么意思。“在過去的12個月,關(guān)于醫(yī)療AI的各種信息,很多一線醫(yī)生都在聽和看,這是一個很好的趨勢。”上海長征醫(yī)院眼科主任醫(yī)師魏銳利對《財經(jīng)》記者說。

2017年11月,由獨角獸工作室等聯(lián)合發(fā)布的《醫(yī)療人工智能醫(yī)生認(rèn)知情況調(diào)研報告》顯示,77%的醫(yī)生至少聽說過一種醫(yī)療人工智能應(yīng)用。

催逼AI箭上弦,本質(zhì)上還是好醫(yī)生稀缺。藍(lán)馳創(chuàng)投合伙人陳維廣,在投了春雨醫(yī)生之后,他多次接到朋友的請求,讓幫忙找好醫(yī)生。對醫(yī)療的需求提升,是全球普適的驅(qū)動因素,而人口老齡化就是那塊巨大的背景板。

像一副擺好的多米諾骨牌,全球人口老齡化加速,老齡化社會之后就是醫(yī)療資源匱乏。美國人口普查局報告顯示,至2015年,全球65歲及以上人口超過6億。這一年,中國65歲及以上人口約1.44億。

英特爾醫(yī)療與生命科學(xué)部亞太區(qū)總經(jīng)理李亞東介紹,目前全球約30%的醫(yī)療資源為65歲以上的人群所占用,50%的醫(yī)療資源為55歲以上的人群占用。

國內(nèi)對AI最現(xiàn)實的期待是,紓解三甲醫(yī)院爆滿的困境,協(xié)助提升縣鄉(xiāng)鎮(zhèn)的醫(yī)療水平,以免漏診、誤診。

依然是數(shù)據(jù)為王

一個十分明顯的趨勢是,AI往醫(yī)學(xué)影像領(lǐng)域扎堆。

動脈網(wǎng)數(shù)據(jù)顯示,國內(nèi)83家醫(yī)療AI企業(yè)中,一半涉足醫(yī)學(xué)影像。“(這一領(lǐng)域)正處于黃金期,除提高效率之外,它能找到人力無法找到的病征,今后完全取代醫(yī)生讀片是完全可能的。”海銀資本創(chuàng)始合伙人王煜全向《財經(jīng)》記者分析。

技術(shù)驅(qū)動因素之外,還有一個重要的底層邏輯在運行。“離開臨床數(shù)據(jù),AI沒法思考。”北京大學(xué)腫瘤醫(yī)院信息部主任衡反修在很多會議上強調(diào)這一金句。

AI的開發(fā)很像教孩子,需要花時間訓(xùn)練它,給它喂大量數(shù)據(jù),同時告訴它什么是錯的,什么是對的。通過這種有監(jiān)督的學(xué)習(xí),AI才能成長。

就像早期阿爾法狗的訓(xùn)練一樣,醫(yī)療AI的訓(xùn)練也得有“棋譜”——以醫(yī)學(xué)影像為例,就是大量由醫(yī)生標(biāo)注出重要信息的影像數(shù)據(jù)集。不過,圍棋有統(tǒng)一規(guī)則,而人的病例復(fù)雜得多,因此,獲得高質(zhì)量的、經(jīng)標(biāo)注的影像大數(shù)據(jù)集,需要大投入。

萬里云醫(yī)療信息科技(北京)有限公司CEO黃家祥認(rèn)識一位AI醫(yī)療創(chuàng)業(yè)公司的創(chuàng)始人,剛?cè)诘綆浊f元投資時十分開心,但不到一年就發(fā)現(xiàn),差不多一半的資金得用在數(shù)據(jù)標(biāo)注上。

相對于基因、病理等的數(shù)據(jù),獲取醫(yī)學(xué)影像數(shù)據(jù)更容易一些,且本身就是結(jié)構(gòu)數(shù)字化的,加之原來就有一些公開的標(biāo)注數(shù)據(jù)集,所以一大批創(chuàng)業(yè)公司才蜂擁進(jìn)入影像領(lǐng)域。

基于同樣的邏輯,在AI醫(yī)療技術(shù)的開發(fā)中,最重要的不是AI技術(shù)哪家強,而是看誰能與醫(yī)院建立良好合作,因為醫(yī)院手中既有醫(yī)療數(shù)據(jù),又有能對數(shù)據(jù)進(jìn)行標(biāo)注的醫(yī)生資源。

實際上,中國的醫(yī)療大數(shù)據(jù)一直存在應(yīng)用障礙,信息孤島現(xiàn)象明顯,國內(nèi)95%醫(yī)院的電子病歷還未全院流通。換句話說,醫(yī)療大數(shù)據(jù)的地基尚未打好。

在醫(yī)療過程中,很多最基本的醫(yī)療術(shù)語尚不能統(tǒng)一,如闌尾炎和盲腸炎或食管癌和食道癌,說的是一個病,但錄入數(shù)據(jù)庫后,計算機會把它分成兩種病。

醫(yī)療數(shù)據(jù)不準(zhǔn)確、不完整,增加數(shù)據(jù)挖掘難度的同時,也降低了數(shù)據(jù)本身的價值。河南省安陽市腫瘤醫(yī)院每年完成2200臺-2500臺的食管癌手術(shù),穩(wěn)居世界第一。但該院院長徐瑞平教授坦陳,“我們做了這么多手術(shù),在國內(nèi)食管癌的(學(xué)術(shù))地位并不高。”原因就是數(shù)據(jù)質(zhì)量不高,后期對病人的隨訪不夠,導(dǎo)致數(shù)據(jù)不完整。

要想讓AI深入,就需要協(xié)調(diào)電子病歷、化驗和影像系統(tǒng)、醫(yī)生記錄和醫(yī)療保險索賠材料等多方的大數(shù)據(jù),這明顯是個難上加難的任務(wù)。

即使在先行者美國,也有同樣困境。《數(shù)字美國》報告顯示,美國有近四分之一的醫(yī)院和超過40%的醫(yī)生尚未采用電子健康記錄系統(tǒng)。即便有電子記錄系統(tǒng),也沒有與病人或其他提供者無縫共享數(shù)據(jù),因為這些系統(tǒng)無法互通操作,病人需要反復(fù)講述他們的病史。

況且,醫(yī)療AI在全球都面臨著一些獨特的高難度障礙:醫(yī)療數(shù)據(jù)的敏感性和嚴(yán)格的保護(hù)隱私規(guī)定,限制了AI醫(yī)療所要求的高質(zhì)量聚合數(shù)據(jù)的收集。如美國醫(yī)院對患者隱私有很多保護(hù),醫(yī)院數(shù)據(jù)不能輕易開放給AI公司。

嘉御基金的創(chuàng)始人衛(wèi)哲注意到一個趨勢,很多國外從事醫(yī)療行業(yè)的公司在尋找中國的合作伙伴,因為中國人口同樣眾多,隱私的保護(hù)卻沒有那么嚴(yán)格,有機會讓醫(yī)療數(shù)據(jù)迅速地集中起來。

真正決定中國產(chǎn)生后發(fā)優(yōu)勢的,依然是數(shù)據(jù)夠大。李鋼觀察到,現(xiàn)階段中國醫(yī)療AI產(chǎn)業(yè)對美國風(fēng)向的跟從效應(yīng)明顯。但未來,人口與數(shù)據(jù)的優(yōu)勢將可能使中國企業(yè)狂飆。

還沒有看上去那么美

AI公司多數(shù)都在幫醫(yī)生做科研,或在提高診斷效率方面做嘗試,真正深入到臨床流程的很少。對AI將會在多大程度上替代醫(yī)生,業(yè)界有兩種不同態(tài)度:AI工程師雄心勃勃,認(rèn)為阿爾法狗的勝利就是最好的證據(jù);醫(yī)生們則疑慮重重,至少還不擔(dān)心自己的飯碗會被AI搶走。

《醫(yī)療人工智能醫(yī)生認(rèn)知情況調(diào)研報告》顯示,外科和影像科醫(yī)生對AI的知曉率高于平均水平,但對AI的整體滿意度也低于平均水平。不滿意主要集中在AI未能減少醫(yī)生的工作量,其次是對原理的質(zhì)疑以及準(zhǔn)確率不高。

很多使用過閱片AI的影像科醫(yī)生,沒有體會到工作量降低。魏銳利表示,AI分析過的影像,醫(yī)生還得重新復(fù)核一遍。因為擔(dān)心漏診,也就是提示有患病可能的影像,沒有被識別出來。

所有醫(yī)療影像AI公司都會宣稱自己的產(chǎn)品比醫(yī)生閱片速度快得多,準(zhǔn)確率要高,但沒有誰敢說能夠杜絕漏診問題。這讓醫(yī)生難以完全信賴閱片AI。一旦醫(yī)生覺得有風(fēng)險,他就得審核AI看過的所有圖像。

漏診的產(chǎn)生,問題很可能出在訓(xùn)練數(shù)據(jù)上。黃家祥介紹,很多AI創(chuàng)業(yè)公司都是靠公開的數(shù)據(jù)源起步的,訓(xùn)練的數(shù)據(jù)量非常有限;還有些公司跟一兩家醫(yī)院合作,把服務(wù)器放到醫(yī)院去訓(xùn)練,也能訓(xùn)練出一個AI模型來,而且對于單一病種,測試效果可能也不錯。但如果換了另外一個不同的數(shù)據(jù)集來測試,很可能就“水土不服”了。

一些AI創(chuàng)業(yè)公司會辯解稱,自家的AI產(chǎn)品與醫(yī)生相比,降低了漏診率。對這種說法,Wision AI的聯(lián)合創(chuàng)始人劉敬家不以為然,中國目前沒有關(guān)于醫(yī)生漏診的準(zhǔn)確數(shù)據(jù),如何得出AI的漏診率比醫(yī)生低的結(jié)論?

所有醫(yī)療影像AI公司都會宣稱自己的產(chǎn)品比醫(yī)生閱片速度快得多,準(zhǔn)確率要高,但沒有誰敢說能夠杜絕漏診問題。

“目前來講,AI所取得的成果還遠(yuǎn)遠(yuǎn)沒達(dá)到預(yù)想的目標(biāo)。”魏銳利說。放眼看,大多數(shù)公司的AI產(chǎn)品還處于研發(fā)階段。

華蓋醫(yī)療基金董事總經(jīng)理施國敏曾撰文稱,人們腦補的人工智能替代醫(yī)生,哪怕僅僅是輔助,在產(chǎn)品層面也尚未出現(xiàn)。

現(xiàn)階段的AI都是弱人工智能,其主流的深度學(xué)習(xí)方法存在一個明顯的缺陷,即它的過程無法描述。換句話說,AI算法的整個過程猶如一個專用的、無法打開的“技術(shù)黑箱”,所謂可用不可見。它既沒有普遍的適應(yīng)性,也無法拆解出具體的智能化業(yè)務(wù)規(guī)則,而且高度依賴于參與訓(xùn)練的海量數(shù)據(jù)。

深度學(xué)習(xí)的特點是有問必答,只要有數(shù)據(jù)輸入,就有結(jié)果輸出。但劉敬家分析,如果沒有金標(biāo)準(zhǔn)對結(jié)果進(jìn)行校驗,很可能輸出錯誤的結(jié)果,而且很容易蒙蔽人。

醫(yī)學(xué)是注重證據(jù)的學(xué)科。頂級醫(yī)學(xué)期刊《新英格蘭醫(yī)學(xué)雜志》去年發(fā)表文章,對深度學(xué)習(xí)在醫(yī)學(xué)預(yù)測領(lǐng)域的應(yīng)用進(jìn)行了分析,認(rèn)為那些沒有探明的醫(yī)學(xué)邏輯支撐,妄想通過堆砌更多維度的數(shù)據(jù)而有所發(fā)現(xiàn)的行為,最終會陷于蝴蝶效應(yīng)的困境之中。也就是初始條件的微小變化,都可能累計出結(jié)果的巨大變化。

“技術(shù)黑箱”中僅有數(shù)學(xué)公式推導(dǎo),卻沒有明確的理論解釋其決策過程。

醫(yī)生們擔(dān)心,這種思維用于簡單的類似于醫(yī)學(xué)影像標(biāo)準(zhǔn)等的工作尚無大礙,一旦涉及更為復(fù)雜的醫(yī)療決策輔助,甚至醫(yī)療方案的整體評估建議,不考慮決策過程完全以結(jié)果為導(dǎo)向去輔助醫(yī)護(hù)人員,會讓醫(yī)護(hù)人員陷于被動,甚至暴露在難以控制的決策風(fēng)險中。

美國醫(yī)療媒體STAT在2017年10月連發(fā)兩篇調(diào)查報道,分析沃森的“超級功能”中存在的技術(shù)缺陷,并指出美國現(xiàn)有法律框架對于醫(yī)療AI監(jiān)管的疏忽之處。

美國一些醫(yī)生和消費者團體認(rèn)為,正是因為AI算法具備“技術(shù)黑箱”的特點,監(jiān)管方需要對像沃森這樣的醫(yī)療AI輔助診斷系統(tǒng)進(jìn)行更加仔細(xì)的檢查和監(jiān)管。

這個新興領(lǐng)域排頭兵,在中國還將面臨政府部門從不同的角度和方面來管制醫(yī)療健康領(lǐng)域,往往出現(xiàn)政策之間的不協(xié)調(diào),或者部門之間的利益沖突和權(quán)力沖突,使得這些創(chuàng)新創(chuàng)業(yè)者難以應(yīng)付。中歐國際工商學(xué)院衛(wèi)生管理與政策中心主任蔡江南為《財經(jīng)》撰文稱,由于缺乏對于制度和政策的了解,許多創(chuàng)新和創(chuàng)業(yè)項目往往包含了制度風(fēng)險和政策風(fēng)險,一旦政策執(zhí)行過程中出現(xiàn)橡皮筋的上下波動,這些項目就可能夭折。

“C輪死”魔咒

活過2018年,是很多醫(yī)療AI公司的決心。

融資青黃不接、技術(shù)迭代的瓶頸,以及商業(yè)模式斷裂,哪一條都有可能拖垮靠技術(shù)吃飯的初創(chuàng)企業(yè)。

李鋼觀察到,當(dāng)細(xì)分行業(yè)龍頭融資紛紛達(dá)到億元級別后,其中領(lǐng)先企業(yè)融資最困難的階段就近在眼前了。

這是因為,對風(fēng)險偏好較高的風(fēng)險投資者而言,細(xì)分行業(yè)龍頭需要的融資額已經(jīng)超過他們能夠投資的體量;而對于較大體量的私募基金而言,這些行業(yè)龍頭依然處于商業(yè)化的探索階段,沒有亮眼的財務(wù)數(shù)字卻頂著極高的估值,實在無法下手。由于億元級別的融資相當(dāng)于B輪融資,因此,這個規(guī)律被稱為“ C輪死”魔咒。

現(xiàn)在,AI醫(yī)療影像行業(yè)的頭部企業(yè),已經(jīng)進(jìn)入C輪的那道缺口之中。

黃家祥也認(rèn)為,2018年對于很多醫(yī)療AI公司來說都是一個巨大的挑戰(zhàn),“可能會淘汰掉一批,不光是融資層面的,還包括一些成長不上去的”。

親身遇到的案例,也加深了黃家祥這一判斷。一個人工智能團隊用了約兩周時間,從一個公開的數(shù)據(jù)源,訓(xùn)練出一個初步的AI產(chǎn)品,這一團隊找到萬里云求助一些脫敏的測試數(shù)據(jù),黃家祥提供了一部分?jǐn)?shù)據(jù),對方測出了90%的準(zhǔn)確率。

看上去技術(shù)門檻似乎并不高,幫助了一些創(chuàng)業(yè)企業(yè)在短時間內(nèi)取得一定的成果。然而,“沒法實現(xiàn)商業(yè)價值,就只是一個基礎(chǔ)的研究成果,只能用來秀一秀。”黃家祥十分篤定,這讓很多人錯誤地判斷了形勢,第一步好邁,但往后走還有沒有資源支撐更加重要。

醫(yī)療AI跟阿爾法狗一樣,需要不停迭代升級。這意味著,要不停用數(shù)據(jù)去訓(xùn)練AI,并且有醫(yī)生持續(xù)地參與,在真實的應(yīng)用場景中去支撐AI的持續(xù)成長。

一位醫(yī)療AI公司創(chuàng)始人對《財經(jīng)》記者說,一些公司遇到技術(shù)迭代的瓶頸,卡住了,“干脆不繼續(xù)推進(jìn),保持低投入、不推廣,等著被收購”。

市場集中進(jìn)程在快速完成,是接受《財經(jīng)》記者采訪的多位資本分析師都認(rèn)同的醫(yī)療AI趨勢。“谷歌、騰訊等巨頭對初創(chuàng)企業(yè)甚至中型公司形成的壓制會越來越明顯,在接下來的一年,競爭會非常激烈。”王煜全分析稱。

巨頭的動作有跡可循。2017年8月才發(fā)布的騰訊覓影,后發(fā)制人地進(jìn)入“國家隊”,在科技部公布的“首批國家人工智能開放創(chuàng)新平臺名單”中,明確“依靠騰訊公司建設(shè)醫(yī)療影像國家新一代人工智能開放創(chuàng)新平臺”,從發(fā)布成立到進(jìn)入“國家隊”的這三個月里,騰訊覓影就與十多家三甲醫(yī)院建立了聯(lián)合實驗室,篩查目標(biāo)病種也從早期食管癌拓展到肺癌、乳腺癌等多病種。

巨頭們從觀望轉(zhuǎn)變?yōu)槿嫱度耄」緜円粴⒊鲆粭l血路,要不坐等被收購或擠死。“很多初創(chuàng)公司從創(chuàng)立之際就是坐等巨頭開個好價的,‘大魚吃小魚’接下來會頻繁發(fā)生。”尚鞅如此解讀2018年的醫(yī)療AI市場。

另一方面,管理也隨著市場發(fā)展開始“劃車道”。2018年8月1日,新版《醫(yī)療器械分類目錄》將開始實行,其中新增了與AI輔助診斷相對應(yīng)的類別。

按照分類規(guī)定,申報二類醫(yī)療器械,診斷軟件通過算法,提供診斷建議,僅有輔助診斷功能,可不直接給出診斷結(jié)論;如果對病變部位進(jìn)行自動識別,并提供明確診斷提示,則按照第三類醫(yī)療器械管理。

醫(yī)療AI公司想走醫(yī)院采購這條路,必須通過相應(yīng)的認(rèn)證。這就需要公司獲得大量真實的臨床應(yīng)用數(shù)據(jù),為申報提早準(zhǔn)備。

多數(shù)醫(yī)療AI公司還處于打磨產(chǎn)品階段,商業(yè)模式并不清晰,與醫(yī)院的合作多為提供產(chǎn)品試用,收不到錢。阿里健康副總裁柯研告訴《財經(jīng)》記者,現(xiàn)在市面上的很多AI公司單純?nèi)谫Y,無論估值多高,沒有收入來源和場景,商業(yè)模式是斷的,“再過三年沒有商業(yè)模式,會走向邊緣”。

在醫(yī)療人工智能領(lǐng)域,最核心的要素是場景。場景大于數(shù)據(jù),數(shù)據(jù)大于算法。至于未來誰埋單,柯研說,“我們相信,只要有場景,最后一定會有人心甘情愿付這個錢。”

國內(nèi)的醫(yī)療AI公司,主要與大城市的三甲醫(yī)院合作,但優(yōu)質(zhì)醫(yī)療從業(yè)者密集的三甲醫(yī)院,沒有迫切需求。真正需要AI緩解的,是資源緊張的中小型醫(yī)院,這部分市場潛力還遠(yuǎn)遠(yuǎn)沒有開發(fā)出來。

放眼整個行業(yè),一個逐漸清晰的場景就是,影像AI會率先支撐基層醫(yī)療。基層醫(yī)院用影像AI篩查以后,發(fā)現(xiàn)一些有問題或者看不準(zhǔn)的病例,再交由上級醫(yī)院的醫(yī)生來確診。

再看遠(yuǎn)些,醫(yī)療AI技術(shù)如果能夠突破應(yīng)用關(guān),將頂級醫(yī)生的診斷能力標(biāo)準(zhǔn)化后,交給基層醫(yī)院,為基層醫(yī)生提供輔助診斷,會在很大程度上改善醫(yī)療資源的緊張狀況。

麥肯錫全球研究所預(yù)測,大面積使用人工智能診斷疾病可能不會太快發(fā)生,即使早已入局的巨頭們,也不過是入門級水平,這并不妨礙AI會成功滲入,成為醫(yī)療的底層技術(shù),就像之前的IT技術(shù)一樣。

人工智能和人類醫(yī)生比誰更聰明,可能還會持續(xù)。《新英格蘭醫(yī)學(xué)雜志》認(rèn)為,這種爭論沒有意義,如何讓人工智能和人類醫(yī)生一起,實現(xiàn)任何單一方都無法提供的臨床效果,才是關(guān)鍵。

行業(yè)的狂歡和泡沫,是任何一個新技術(shù)浪潮的必經(jīng)之路。最后勝出的,是那些創(chuàng)造了真實價值的技術(shù)和產(chǎn)品。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 醫(yī)療
    +關(guān)注

    關(guān)注

    8

    文章

    1905

    瀏覽量

    59910
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49008

    瀏覽量

    249315

原文標(biāo)題:中國醫(yī)療AI公司遇“C輪死”魔咒:2018 如何破局

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    人工智能和機器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    作者:DigiKey Editor 人工智能(AI)已經(jīng)是當(dāng)前科技業(yè)最熱門的話題,且其應(yīng)用面涉及人類生活的各個領(lǐng)域,對于各個產(chǎn)業(yè)帶來相當(dāng)重要的影響,且即將改變人類未來發(fā)展的方方面面。
    的頭像 發(fā)表于 01-25 17:37 ?928次閱讀
    <b class='flag-5'>人工智能</b>和機器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    AN-166:與Linduino一起飛行中更新

    電子發(fā)燒友網(wǎng)站提供《AN-166:與Linduino一起飛行中更新.pdf》資料免費下載
    發(fā)表于 01-12 10:09 ?0次下載
    AN-166:與Linduino<b class='flag-5'>一起</b>飛行中更新

    卡諾模型為人工智能領(lǐng)域提供種全新的視角

    在探索人工智能如何更深層次滿足用戶需求、提升用戶體驗的旅程中,卡諾模型(Kano Model)提供個極具價值的理論框架。這模型不僅為產(chǎn)品開發(fā)者帶來了深刻的洞察力,同時也為
    的頭像 發(fā)表于 12-11 10:17 ?640次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    了數(shù)據(jù)傳輸?shù)膲毫Γ€提高了系統(tǒng)的響應(yīng)速度。而在物聯(lián)網(wǎng)中,嵌入式系統(tǒng)更是個核心的組成部分。通過將人工智能算法應(yīng)用于物聯(lián)網(wǎng)設(shè)備,我們可以實現(xiàn)對海量數(shù)據(jù)的智能分析,從而為各種應(yīng)用場景
    發(fā)表于 11-14 16:39

    心智理論測試:人工智能擊敗人類

    測試結(jié)果并不定意味著人工智能可以“理解”人。 心智理論是指可以理解他人心理狀態(tài)的能力,正是它驅(qū)使著人類社會運轉(zhuǎn)。它幫助你決定在緊張的情況下該說什么、猜測其他車輛的駕駛員將要做什么,以及與電影中
    的頭像 發(fā)表于 11-08 10:54 ?702次閱讀

    人工智能、機器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中個很大的子集是機器學(xué)習(xí)——算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2974次閱讀
    <b class='flag-5'>人工智能</b>、機器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能人類的影響有哪些

    人工智能(AI)作為現(xiàn)代科技的杰出代表,正在以前所未有的速度改變著人類的生活、工作和社會結(jié)構(gòu)。這種影響是全方位的,既帶來了顯著的積極變化,也伴隨著系列挑戰(zhàn)和問題。 、積極影響 工作
    的頭像 發(fā)表于 10-22 17:23 ?5996次閱讀

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    驅(qū)動科學(xué)創(chuàng)新》的第6章為我提供了寶貴的知識和見解,我對人工智能在能源科學(xué)中的應(yīng)用有了更深入的認(rèn)識。通過閱讀這章,我更加堅信人工智能在未來
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    農(nóng)業(yè)、環(huán)保等,為人類社會的可持續(xù)發(fā)展做出貢獻(xiàn)。 總結(jié) 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們展示了個充滿希望和機遇的未來。在這個未來中,
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第人工智能驅(qū)動的科學(xué)創(chuàng)新學(xué)習(xí)心得

    周末收到本新書,非常高興,也非常感謝平臺提供閱讀機會。 這是本挺好的書,包裝精美,內(nèi)容詳實,干活滿滿。 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》這本書的第
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    人工智能推薦系統(tǒng)中強大的圖形處理器(GPU)爭高下。其獨特的設(shè)計使得該處理器在功耗受限的條件下仍能實現(xiàn)高性能的圖像處理任務(wù)。 Ceremorphic公司 :該公司開發(fā)的分層學(xué)習(xí)處理器結(jié)合了
    發(fā)表于 09-28 11:00

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進(jìn)行描訴,有利于總結(jié)經(jīng)驗,擬按照要求準(zhǔn)備相關(guān)體會材料。看能否有助于入門和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新

    ! 《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》 這本書便將為讀者徐徐展開AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學(xué)家做了什么? 人工智能
    發(fā)表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內(nèi)外大咖齊聚話AI

    呈現(xiàn)、產(chǎn)業(yè)展覽、技術(shù)交流、學(xué)術(shù)論壇于體的世界級人工智能合作交流平臺。本次大會暨博覽會由工業(yè)和信息化部政府采購中心、廣東省工商聯(lián)、前海合作區(qū)管理局、深圳市工信局等單位指導(dǎo),深圳市人工智能產(chǎn)業(yè)協(xié)會主辦
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場可編程門陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個方面: 、深度學(xué)習(xí)加速 訓(xùn)練和推理過程加速:FPGA可以用來加速深度學(xué)習(xí)的訓(xùn)練和推理過程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05
    主站蜘蛛池模板: 手机看日韩毛片福利盒子 | 国产亚洲综合视频 | 天天综合亚洲国产色 | 视频一区二区免费 | 么公的好大好硬好深好爽视频 | 手机免费在线视频 | 农村妇女野外一级毛片 | 美女扒开尿囗给男人玩的动图 | 天天摸日日添狠狠添婷婷 | 国产综合久久久久影院 | 亚洲国产成人va在线观看 | 亚洲一区二区在线视频 | 免费看黄的视频软件 | 婷婷在线五月 | 色婷婷综合久久久中文字幕 | 男人j进入女人j在线视频 | 欧美一级免费看 | 四虎免费影院4hu永久免费 | 午夜美女视频在线观看高清 | 国产美女亚洲精品久久久久久 | 日本a网站 | 亚洲一区在线免费观看 | 久久国产午夜精品理论片34页 | 亚洲成人精品在线 | 天天综合天天操 | 久久久婷婷| 激情com| 美国bj69video18| 女人张腿让男子桶免费动态图 | 天天摸天天插 | 成人爽a毛片在线视频 | 爱爱免费视频网站 | 乱色伦短篇小说 | 欧美xxxx色视频在线观看免费 | 亚洲影视网 | 亚洲国产成人久久精品图片 | 女的扒开尿口让男人桶 | 97影院理论片手机在线观看 | 6080伦理久久亚洲精品 | 日本欧美色图 | 手机看片福利盒子久久青 |