91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

OpenAI介紹可擴(kuò)展的,與任務(wù)無關(guān)的的自然語言處理(NLP)系統(tǒng)

電子工程師 ? 2018-06-17 22:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近日,OpenAI 在其官方博客發(fā)文介紹了他們最新的自然語言處理(NLP)系統(tǒng)。這個(gè)系統(tǒng)是可擴(kuò)展的、與任務(wù)無關(guān)的,并且在一系列不同的 NLP 任務(wù)中都取得了亮眼的成績(jī)。但該方法在計(jì)算需求等方面仍存在改進(jìn)的空間。下面我們來看他們的博文:

我們即將發(fā)布一個(gè)可擴(kuò)展的,與任務(wù)無關(guān)的自然語言處理系統(tǒng),該系統(tǒng)在一系列不同的語言任務(wù)上都取得了目前最先進(jìn)的成績(jī)。我們的方法結(jié)合了兩種現(xiàn)有的 NLP 網(wǎng)絡(luò)架構(gòu):Transformer 和無監(jiān)督預(yù)訓(xùn)練。大量任務(wù)數(shù)據(jù)集上的測(cè)試結(jié)果表明,這種方法將監(jiān)督學(xué)習(xí)方法與無監(jiān)督預(yù)訓(xùn)練結(jié)合得非常好;當(dāng)然,這也是之前許多人在探索的想法。我們希望我們的工作能夠激發(fā)該方向進(jìn)一步的研究,并鼓勵(lì)大家將這一想法應(yīng)用到更大更多的不同數(shù)據(jù)集上。

先看結(jié)果:

我們的系統(tǒng)的工作流程分為兩個(gè)階段:首先,以無監(jiān)督的方式在大量數(shù)據(jù)上訓(xùn)練一個(gè) Transformer 模型——使用語言建模作為訓(xùn)練信號(hào)——然后,在小得多的監(jiān)督數(shù)據(jù)集上對(duì)這個(gè)模型進(jìn)行 fine-tuning,以幫助它解決特定的任務(wù)。這項(xiàng)研究是建立在我們之前一項(xiàng)關(guān)于情緒神經(jīng)元(Sentiment Neuron)的工作基礎(chǔ)之上的,在那項(xiàng)工作中我們注意到,當(dāng)訓(xùn)練數(shù)據(jù)足夠多時(shí),無監(jiān)督學(xué)習(xí)技術(shù)可以產(chǎn)生驚人的判別性特征。

在本項(xiàng)研究工作中,我們這個(gè)想法進(jìn)行了進(jìn)一步的探索:我們可以開發(fā)一個(gè)模型,以無監(jiān)督的方式對(duì)大量數(shù)據(jù)進(jìn)行訓(xùn)練,然后對(duì)模型進(jìn)行 fine-tuning,以在許多不同任務(wù)上獲得良好的性能。我們的研究結(jié)果表明,這種方法的效果非常好。針對(duì)不同的任務(wù),只需要對(duì)同一個(gè)的核心模型進(jìn)行最少的調(diào)整就可以進(jìn)行應(yīng)用。

這項(xiàng)工作建立在半監(jiān)督序列學(xué)習(xí)(Semi-supervised Sequence Learning)的基礎(chǔ)之上,其中半監(jiān)督序列學(xué)習(xí)方法展示了如何通過使用 LSTM 的無監(jiān)督預(yù)訓(xùn)練,然后進(jìn)行有監(jiān)督的 fine-tuning 來提高文檔分類性能。

我們的工作還對(duì)ULMFiT進(jìn)行了拓展,說明了為了在各個(gè)文檔分類數(shù)據(jù)集上獲得最先進(jìn)的性能,應(yīng)該如何對(duì)單個(gè)與數(shù)據(jù)集無關(guān)的 LSTM 語言模型進(jìn)行 fine-tuning;我們的工作展示了如何使用基于 Transformer 的模型來實(shí)現(xiàn)文檔分類之外的更廣泛的任務(wù),如常識(shí)推理,語義相似性和閱讀理解。

它和 ELMo 也有一些類似,但比 ELMo 更加通用。(編輯注:ELMo 是目前最先進(jìn)的上下文詞嵌入技術(shù),同樣使用了預(yù)訓(xùn)練技術(shù),但為了在各種任務(wù)中獲得最先進(jìn)的結(jié)果針對(duì)不同任務(wù)使用了定制架構(gòu)。)

我們的實(shí)驗(yàn)結(jié)果只需要進(jìn)行非常少的調(diào)整就可以實(shí)現(xiàn)。其中所有數(shù)據(jù)集都使用單一的正向語言模型,沒有任何集成,并且大多數(shù)報(bào)告結(jié)果都使用了完全相同的超參數(shù)設(shè)置。

值得一提的是該方法在三種關(guān)于測(cè)試常識(shí)推理和閱讀理解的數(shù)據(jù)集(COPA,RACE和ROCStories)上的表現(xiàn)。我們的模型以遠(yuǎn)超第二名的成績(jī)?cè)谶@些數(shù)據(jù)集上獲得了最先進(jìn)的結(jié)果。這些數(shù)據(jù)集普遍被認(rèn)為需要借助多語句推理和有意義的世界知識(shí)進(jìn)行解決,而我們的模型主要通過無監(jiān)督學(xué)習(xí)來提高這些技能。這也表明了通過無監(jiān)督技術(shù)來開發(fā)復(fù)雜的語言理解功能的可能。這讓我們特別興奮。

▌為什么是無監(jiān)督學(xué)習(xí)?

監(jiān)督學(xué)習(xí)是機(jī)器學(xué)習(xí)最近成功的關(guān)鍵。但是,它可能需要大量的、經(jīng)過仔細(xì)清理的、昂貴的數(shù)據(jù)集才能發(fā)揮非常好的作用。而無監(jiān)督學(xué)習(xí)則有可能解決這些不足,這是非常有吸引力的。由于無監(jiān)督學(xué)習(xí)沒有了顯式人工標(biāo)簽的限制,在當(dāng)前計(jì)算量和原始數(shù)據(jù)不斷增加的趨勢(shì)下,這項(xiàng)技術(shù)表現(xiàn)出了非常好的擴(kuò)展性。 不過雖然無監(jiān)督學(xué)習(xí)是一個(gè)非常活躍的研究領(lǐng)域,但其實(shí)際用途仍然有限。

最近有人試圖通過無監(jiān)督學(xué)習(xí)用大量無標(biāo)記數(shù)據(jù)進(jìn)行增強(qiáng)以進(jìn)一步提高系統(tǒng)的自然語言處理能力。通過無監(jiān)督技術(shù)訓(xùn)練的詞向量表示可以使用由 TB 級(jí)信息組成的大型數(shù)據(jù)集,并且當(dāng)它與監(jiān)督學(xué)習(xí)相結(jié)合時(shí),可以提高各種 NLP 任務(wù)的性能。之前,這些 NLP 的無監(jiān)督技術(shù)(例如GLoVe和word2vec)使用的都還是簡(jiǎn)單模型(詞向量)和訓(xùn)練信號(hào)(詞局部共現(xiàn),the local co-occurence of words)。

Skip-Thought Vectors是早期的一個(gè)值得注意的方法,展示了通過更復(fù)雜的方法實(shí)現(xiàn)的改進(jìn)的可能性。而現(xiàn)在正在使用的新技術(shù)則進(jìn)一步提高了性能,這包括使用預(yù)訓(xùn)練的語句表示模型,上下文詞向量(主要是ELMo和CoVE),以及使用定制架構(gòu)來融合無監(jiān)督預(yù)訓(xùn)練和監(jiān)督 fine-tuning 的方法(也就是我們的方法)。

在大量文本上對(duì)我們的模型進(jìn)行預(yù)訓(xùn)練,可顯著提高其在諸如 Winograd Schema Resolution 等具有挑戰(zhàn)性的自然語言處理任務(wù)上的表現(xiàn)。

我們還注意到,該方法可以直接使用底層語言模型開始執(zhí)行任務(wù),而無需對(duì)其進(jìn)行任何訓(xùn)練。例如,隨著基礎(chǔ)語言模型的改進(jìn),像在選擇題中選擇正確答案這種任務(wù)的性能會(huì)穩(wěn)步增加。

雖然這些方法的絕對(duì)性能相對(duì)于最新的監(jiān)督技術(shù)而言仍然很低(對(duì)于問答式任務(wù),它僅比簡(jiǎn)單的滑動(dòng)窗口基線結(jié)果好),但令人鼓舞的是,這種行為在大量任務(wù)中表現(xiàn)的非常魯棒。這種不使用任務(wù)和世界信息的隨機(jī)初始化網(wǎng)絡(luò)表現(xiàn)的和使用這些信息的隨機(jī)網(wǎng)絡(luò)一樣好。這為我們了解為什么生成式預(yù)訓(xùn)練可以提高下游任務(wù)的性能提供了一些有意義的參考。

我們還使用模型中現(xiàn)有的語言功能進(jìn)行了情感分析。對(duì)于斯坦福 Sentiment Treebank 數(shù)據(jù)集(該數(shù)據(jù)集包含了電影評(píng)論中的正面和負(fù)面語句),我們可以使用語言模型來猜測(cè)評(píng)論是正面還是負(fù)面(在語句后面輸入單詞“very”即可進(jìn)行預(yù)測(cè)),并且觀察模型是傾向于將詞性預(yù)測(cè)為“積極”還是傾向于將詞性預(yù)測(cè)為“消極”。 這種方法根本不需要根據(jù)任務(wù)對(duì)模型進(jìn)行調(diào)整,并且其性能與經(jīng)典基線準(zhǔn)確率相當(dāng),可達(dá) 80% 。

我們的工作也驗(yàn)證了 Transformer 架構(gòu)的魯棒性和實(shí)用性,表明它具有足夠的靈活性,可在廣泛的任務(wù)中實(shí)現(xiàn)最先進(jìn)的結(jié)果,而無需復(fù)雜的任務(wù)定制或超參數(shù)調(diào)整。

▌不足之處

這個(gè)項(xiàng)目也有一些突出問題非常值得注意:

計(jì)算需求:以前的許多自然語言處理方法都是從頭開始在單個(gè) GPU 上訓(xùn)練相對(duì)較小的模型。但我們的方法預(yù)訓(xùn)練步驟計(jì)算需求則相當(dāng)昂貴——在 8 個(gè) GPU 上訓(xùn)練 1 個(gè)月。幸運(yùn)的是,這只需要做一次,我們正在將我們的模型發(fā)布出來,以方便其他人不用重復(fù)這一步驟。

它也是一個(gè)大型模型(與之前的工作相比),因此使用了更多的計(jì)算和內(nèi)存——我們使用了37層(12塊)Transformer 架構(gòu),并且在最多可達(dá) 512 個(gè) tokens 的序列上訓(xùn)練。并且大多數(shù)實(shí)驗(yàn)都是在 4 個(gè)和 8 個(gè) GPU 的系統(tǒng)上進(jìn)行的。該模型針對(duì)新任務(wù)進(jìn)行 fine-tuning 的速度非常快,有助于減輕額外的資源需求。

通過文本學(xué)習(xí)世界的局限性和偏見:互聯(lián)網(wǎng)上隨時(shí)可用的書籍和文本所包含的關(guān)于世界的信息并不完整,甚至并不準(zhǔn)確。最近的研究(https://arxiv.org/abs/1705.11168)表明,某些類型的信息很難通過文本進(jìn)行學(xué)習(xí)。而另外一些研究(https://arxiv.org/abs/1803.02324)則表明了數(shù)據(jù)分布中存在的模型學(xué)習(xí)和開發(fā)偏見。

依舊脆弱的泛化性能:盡管我們的方法提升了自然語言處理系統(tǒng)在大量任務(wù)上的性能,但目前的深度學(xué)習(xí) NLP 模型仍然表現(xiàn)出了令人驚訝的反直覺的行為——尤其是在以系統(tǒng)性、對(duì)抗性或分布性的方式進(jìn)行評(píng)估時(shí)。盡管我們已經(jīng)觀察到一些研究進(jìn)展,但我們的方法對(duì)這些問題并不是免疫的。

這種方法表現(xiàn)出比先前的面向文字蘊(yùn)含(Textual entailment)的神經(jīng)網(wǎng)絡(luò)方法更好的詞法魯棒性。在 Glockner 等人介紹的數(shù)據(jù)集(https://arxiv.org/abs/1805.02266)上,我們模型的準(zhǔn)確率達(dá)到了 83.75%,其性能類似于通過 WordNet 整合外部知識(shí)的KIM。

▌工作展望

方法規(guī)模化拓展:我們已經(jīng)觀察到,語言模型的性能改進(jìn)與下游任務(wù)的改進(jìn)密切相關(guān)。目前我們正在使用商用硬件(一臺(tái) 8 GPU 計(jì)算機(jī))以及僅包含幾千本書(約 5 GB 文本)的訓(xùn)練數(shù)據(jù)集。這表明經(jīng)過充分驗(yàn)證該方法在處理越來越大的計(jì)算量和數(shù)據(jù)時(shí)還有很大提升空間。

改進(jìn)的 fine-tuning:我們?cè)?fine-tuning 上的策略目前非常簡(jiǎn)單。通過使用更復(fù)雜的自適應(yīng)和轉(zhuǎn)換技術(shù)(例如ULMFiT中的技術(shù))可能為我們的系統(tǒng)帶來實(shí)質(zhì)性的改進(jìn)。

更好地理解生成式預(yù)訓(xùn)練帶來提升的原因:盡管我們已經(jīng)討論了一些關(guān)于這個(gè)問題的想法,但更有針對(duì)性的實(shí)驗(yàn)和研究將有助于我們對(duì)那些相互矛盾的解釋進(jìn)行判斷。例如,我們觀察到的提升有多少是由于對(duì)處理更廣泛上下文能力的改進(jìn),以及多少是由于對(duì)世界知識(shí)的改進(jìn)?

▌附錄:數(shù)據(jù)集示例

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 自然語言處理
    +關(guān)注

    關(guān)注

    1

    文章

    628

    瀏覽量

    14150

原文標(biāo)題:OpenAI NLP最新進(jìn)展:通過無監(jiān)督學(xué)習(xí)提升語言理解

文章出處:【微信號(hào):rgznai100,微信公眾號(hào):rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何優(yōu)化自然語言處理模型的性能

    優(yōu)化自然語言處理NLP)模型的性能是一個(gè)多方面的任務(wù),涉及數(shù)據(jù)預(yù)處理、特征工程、模型選擇、模型調(diào)參、模型集成與融合等多個(gè)環(huán)節(jié)。以下是一些具
    的頭像 發(fā)表于 12-05 15:30 ?1696次閱讀

    如何使用自然語言處理分析文本數(shù)據(jù)

    使用自然語言處理NLP)分析文本數(shù)據(jù)是一個(gè)復(fù)雜但系統(tǒng)的過程,涉及多個(gè)步驟和技術(shù)。以下是一個(gè)基本的流程,幫助你理解如何使用NLP來分析文本數(shù)
    的頭像 發(fā)表于 12-05 15:27 ?1570次閱讀

    自然語言處理與機(jī)器學(xué)習(xí)的關(guān)系 自然語言處理的基本概念及步驟

    Learning,簡(jiǎn)稱ML)是人工智能的一個(gè)核心領(lǐng)域,它使計(jì)算機(jī)能夠從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測(cè)或決策。自然語言處理與機(jī)器學(xué)習(xí)之間有著密切的關(guān)系,因?yàn)闄C(jī)器學(xué)習(xí)提供了一種強(qiáng)大的工具,用于從大量文本數(shù)據(jù)中提取模式和知識(shí),從而提高NLP
    的頭像 發(fā)表于 12-05 15:21 ?1973次閱讀

    語音識(shí)別與自然語言處理的關(guān)系

    在人工智能的快速發(fā)展中,語音識(shí)別和自然語言處理NLP)成為了兩個(gè)重要的技術(shù)支柱。語音識(shí)別技術(shù)使得機(jī)器能夠理解人類的語音,而自然語言處理則讓
    的頭像 發(fā)表于 11-26 09:21 ?1491次閱讀

    什么是LLM?LLM在自然語言處理中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,自然語言處理NLP)領(lǐng)域迎來了革命性的進(jìn)步。其中,大型語言模型(LLM)的出現(xiàn),標(biāo)志著我們對(duì)語言理解能力的一次
    的頭像 發(fā)表于 11-19 15:32 ?3639次閱讀

    ASR與自然語言處理的結(jié)合

    ASR(Automatic Speech Recognition,自動(dòng)語音識(shí)別)與自然語言處理NLP)是人工智能領(lǐng)域的兩個(gè)重要分支,它們?cè)谠S多應(yīng)用中緊密結(jié)合,共同構(gòu)成了自然語言理解和
    的頭像 發(fā)表于 11-18 15:19 ?1023次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理NLP)是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其在
    的頭像 發(fā)表于 11-15 09:41 ?811次閱讀

    使用LSTM神經(jīng)網(wǎng)絡(luò)處理自然語言處理任務(wù)

    自然語言處理NLP)是人工智能領(lǐng)域的一個(gè)重要分支,它旨在使計(jì)算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體——長(zhǎng)短期記憶(LSTM)網(wǎng)
    的頭像 發(fā)表于 11-13 09:56 ?1155次閱讀

    自然語言處理的未來發(fā)展趨勢(shì)

    隨著技術(shù)的進(jìn)步,自然語言處理NLP)已經(jīng)成為人工智能領(lǐng)域的一個(gè)重要分支。NLP的目標(biāo)是使計(jì)算機(jī)能夠理解、解釋和生成人類語言,這不僅涉及到
    的頭像 發(fā)表于 11-11 10:37 ?1718次閱讀

    自然語言處理與機(jī)器學(xué)習(xí)的區(qū)別

    在人工智能的快速發(fā)展中,自然語言處理NLP)和機(jī)器學(xué)習(xí)(ML)成為了兩個(gè)核心的研究領(lǐng)域。它們都致力于解決復(fù)雜的問題,但側(cè)重點(diǎn)和應(yīng)用場(chǎng)景有所不同。 1. 自然語言
    的頭像 發(fā)表于 11-11 10:35 ?1533次閱讀

    自然語言處理的應(yīng)用實(shí)例

    在當(dāng)今數(shù)字化時(shí)代,自然語言處理NLP)技術(shù)已經(jīng)成為我們?nèi)粘I畹囊徊糠帧闹悄苁謾C(jī)的語音助手到在線客服機(jī)器人,NLP技術(shù)的應(yīng)用無處不在。 1. 語音識(shí)別與虛擬助手 隨著Siri、Go
    的頭像 發(fā)表于 11-11 10:31 ?1608次閱讀

    使用LLM進(jìn)行自然語言處理的優(yōu)缺點(diǎn)

    自然語言處理NLP)是人工智能和語言學(xué)領(lǐng)域的一個(gè)分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。大型
    的頭像 發(fā)表于 11-08 09:27 ?2439次閱讀

    AI大模型在自然語言處理中的應(yīng)用

    AI大模型在自然語言處理NLP)中的應(yīng)用廣泛且深入,其強(qiáng)大的語義理解和生成能力為NLP任務(wù)帶來了顯著的性能提升。以下是對(duì)AI大模型在
    的頭像 發(fā)表于 10-23 14:38 ?1530次閱讀

    AI智能化問答:自然語言處理技術(shù)的重要應(yīng)用

    自然語言處理NLP)是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。問答系統(tǒng)作為
    的頭像 發(fā)表于 10-12 10:58 ?1091次閱讀
    AI智能化問答:<b class='flag-5'>自然語言</b><b class='flag-5'>處理</b>技術(shù)的重要應(yīng)用

    圖像識(shí)別技術(shù)包括自然語言處理

    圖像識(shí)別技術(shù)與自然語言處理是人工智能領(lǐng)域的兩個(gè)重要分支,它們?cè)诤芏喾矫嬗兄芮械穆?lián)系,但也存在一些區(qū)別。 一、圖像識(shí)別技術(shù)與自然語言處理的關(guān)系 1.1 圖像識(shí)別技術(shù)的定義 圖像識(shí)別技術(shù)
    的頭像 發(fā)表于 07-16 10:54 ?1561次閱讀
    主站蜘蛛池模板: 日本a级片视频 | 在线观看你懂的视频 | 欧美成人黄色 | 黄网站在线播放 | 中文字幕视频一区 | xxx性欧美 | 五月婷婷综合激情 | 婷婷久月| 你懂的在线免费视频 | 天天摸日日舔 | 午夜久久福利 | 欧美成人精品一区二三区在线观看 | 最新亚洲人成网站在线影院 | 日本亚洲卡一卡2卡二卡三卡四卡 | 男人和女人在床做黄的网站 | 国产在线麻豆自在拍91精品 | 白浆喷射 | 亚洲视频色 | 性生交大片免费一级 | 性欧美video视频另类 | 亚洲一区二区在线视频 | 韩国免费三片在线视频 | 狠狠操操| 五月婷婷综合激情 | 可以免费看的黄色片 | 亚洲视频四区 | 色男人网 | 亚洲欧美国产高清va在线播放 | 欧美又粗又长又湿又黄的视频 | mm131美女肉体艺术图片 | 亚洲v在线 | 中国美女毛片 | 天天看爽片 | 国产一级特黄aa大片在线 | 丁香六月婷婷激情 | 五月婷婷丁香色 | 狠狠色噜噜狠狠狠狠2021天天 | 性色成人网 | 五月天婷婷色图 | 欧美人与动性视频在线观 | 国产你懂|